Taxing Capital? The Importance of How Human Capital is Accumulated

William B Peterman*
January 20, 2014

Abstract

This paper considers the impact of how human capital is accumulated on optimal capital tax policy in a life cycle model. In particular, it compares the optimal capital tax when human capital is examined exogenously, endogenously through learning-by-doing, and endogenously through learning-or-doing. Previous work demonstrates that in a simple two generation life cycle model, if the utility function is homothetic in both consumption and labor, then the government has no motive to condition taxes on age or tax capital. In contrast, this paper demonstrates analytically that adding either form of endogenous human capital accumulation creates a motive for the government to use age-dependent labor income taxes. Moreover, if the government cannot condition taxes on age, then a capital tax can be used to mimic such taxes. This paper quantitatively explores the strength of this channel and finds that, compared to the benchmark model with exogenous human capital, introducing learning-by-doing causes the optimal capital tax to increase by 7.3 percentage points. In contrast, introducing learning-or-doing causes a much smaller increase in the optimal capital tax, 0.7 percentage points, compared to the benchmark model with exogenous human capital accumulation. Taken as a whole, this paper finds that the specific formulation by which human capital is accumulated can have large implications on the optimal capital tax.

Key Words: Optimal Taxation, Capital Taxation, Human Capital.

*20th and C Street NW, Washington DC 20551. Tel: 202-452-3703. E-mail: william.b.peterman@frb.gov. Views expressed on this site are my own and do not reflect the view of the Federal Reserve System or its staff. For extensive discussions and helpful comments, I thank the anonymous referee, Vasia Panousi, Irina Telyukova, Valerie Ramey, Roger Gordon, and Scott Borger, as well as seminar participants at University of California at San Diego, Madrid Macroeconomic Workshop, the Federal Reserve Board of Governors, the Federal Reserve Bank of Philadelphia, the Eastern Economics Association Conference, the Missouri Economics Conference, the Midwestern Macroeconomics Conference, and the Conference in Computing in Economics and Finance. A previous version of this paper was distributed under the title “The Effect of Learning-by-Doing on Optimal Taxation”
1 Introduction

In their seminal works, Chamley (1986) and Judd (1985) determine that it is not optimal to tax capital in an infinitely-lived agent model. In contrast, Peterman (2013b) and Conesa et al. (2009) demonstrate that in a life cycle model the optimal tax on capital is positive. The authors show that, in part, the non-zero optimal capital tax is driven by the government wanting to condition taxes on age due to variation in consumption and labor over the life cycle.\footnote{Atkeson et al. (1999), Erosa and Gervais (2002), and Garriga (2001) demonstrate this result analytically in a simple life cycle model.} This variation is partially due to variation in an agent’s productivity over his life cycle, or age-specific human capital. Despite age-specific human capital being partially responsible for the non-zero optimal capital tax result in life cycle models, previous research tends to assume that it is accumulated exogenous. This paper revisits optimal capital taxation by, analytically and quantitatively, assessing the effect of the human capital accumulation process on the optimal capital tax.

Specifically, this paper explores the change in the optimal capital tax when human capital is accumulated exogenously, endogenously with learning-by-doing (LBD), or endogenously with learning-or-doing (LOD). As opposed to being pre-determined with exogenous human capital accumulation, with LBD an agent acquires human capital by working. Moreover, in LOD, which is also referred to as Ben Porath type skill accumulation or on-the-job training, an agent acquires human capital by spending time training in periods in which he is also working.\footnote{This paper does not evaluate the effect of formal education on optimal tax policy since the paper focuses on training once an individuals begins working. Therefore, the quantitative model is calibrate to exclude time spent in school. However, the mechanisms by which LOD changes the optimal tax policy would be similar if individuals work while attending school.} Thus, with LBD, an agent determines his level of age-specific human capital by choosing the hours he works, while with LOD, an agent determines his human capital by choosing the hours he trains. I analyze the effects of all three forms since each is commonly employed in quantitative life cycle models.\footnote{Examples of life cycle studies that include these three forms of human capital accumulation are Conesa et al. (2009), Conesa and Krueger (2006), Huggett et al. (2007)Hansen and Imrohoroglu (2009), Imai and Keane (2004), Chang et al. (2002), Jones et al. (1997), Jones and Manueli (1999), Guvenen et al. (2009), Kuruscu (2006), Kapicka (2006), and Kapicka (2009).}

I analytically assess the implications of how human capital is accumulated in simple overlapping generations model (OLG) model where the utility function is both separable and homothetic with respect to consumption and hours worked. Similar to Garriga (2001), I find that in this model the optimal tax policy does not include age-dependent taxes on labor income and the optimal capital tax is zero.\footnote{A host of work demonstrates a similar set of results in a two generation model with a single cohort. Two examples of these works include Atkinson and Stiglitz (1976), and Deaton (1979).} In contrast, I find adding LBD or LOD causes the optimal tax policy to include age-dependent taxes. Moreover, if age-dependent taxes are not available then a non-zero then a non-zero capital tax can be used to mimic the wedge..
created by conditioning labor income taxes on age. Specifically, a positive (negative) tax on capital can be used to impose the same wedge on the marginal rate of substitution as a relatively larger (smaller) tax on young labor income.

Adding LBD alters the optimal tax policy because it alters an agent’s incentives to work over his life cycle. In a model with exogenous skill accumulation, an agent’s only incentive to work is his wage. In a model with LBD, the benefits from working are current wages as well as an increase in future age-specific human capital. I refer to these benefits as the “wage benefit” and the “human capital benefit,” respectively. The importance of the human capital benefit decreases as an agent approaches retirement. Thus, adding LBD causes the agent to supply labor relatively less elastically early in his life compared with later in his life. Relying more heavily on a capital tax reduces the distortions that this tax policy imposes on the economy, since it implicitly taxes this less elastically supplied labor income from younger agents at a higher rate than older agents. I refer to this channel as the elasticity channel since an alteration to the labor supply elasticity profile is responsible for the change in the optimal capital tax.

Adding LOD to the model also causes the government to use a non-zero capital tax. There are two channels through which LOD affects the optimal tax policy: the elasticity channel and the savings channel. First, adding LOD changes an agent’s elasticity profile. Training is an imperfect substitute for labor as both involve forfeiting leisure in exchange for higher lifetime income. The substitutability of training decreases as an agent ages since he has less time to take advantage of the accumulated skills. Therefore, introducing LOD causes a young agent to supply labor relatively more elastically. Because of this elasticity channel, the optimal capital tax is lower in order to decreases the implicit relative taxes on labor income of younger agents. The second channel, the savings channel, arises because training is an alternative method of saving, as opposed to accumulating physical capital. When the government taxes labor they implicitly decrease the desirability to save via training as opposed to ordinary capital. In order to mitigate this distortion, the government increases the capital tax. Since these two channels have counteracting effects, one cannot analytically determine the cumulative direction of their impact on the optimal tax policy.\(^5\)

I quantitatively assess the effect of the form by which age-specific human capital is accumulated on the optimal capital tax in a calibrated life cycle model using the specific utility function from Garriga (2001). In a calibrated OLG model which includes exogenously determined retirement, a reduced form social security program, lifetime length uncertainty, and exogenous age-specific human capital (exogenous model), I find that the optimal tax rates are 18.2 percent on capital and 23.7 percent on labor. Unlike the analytically tractable model, the optimal capital tax is non-zero with exogenous human capital accumulation because I

\(^{5}\)It is assumed that the government cannot directly tax human capital since it is unobservable.
include additional features in this more realistic model. I find that adding either form of endogenous human capital increases the optimal capital tax. In the model with LBD the optimal tax rates are 25.5 percent on capital and 22.1 percent on labor. The optimal tax rates in the model with the LOD framework are 18.9 percent on capital and 23.6 percent on labor. The optimal tax on capital varies by up to 7.3 percentage points (approximately forty percent) depending on how human capital accumulation is modeled. Therefore, this modeling choice is of first order importance when examining optimal capital tax policy.

I test the sensitivity of these results with respect to the utility function. Using an alternative utility function that is neither separable nor homothetic with respect to consumption and hours worked, I find that the optimal capital tax is much larger in all three models. The optimal capital tax is larger because, with this utility function, the Frisch labor supply elasticity profile is upward sloping regardless of the form of human capital accumulation. Nevertheless, I find that the range of optimal capital taxes in the three models is even larger, 14.5 percentage points (approximately 45 percent). Therefore, even in this set up which has a large motive for a capital tax in all three models, how human capital accumulation is included has large implications for the optimal capital tax.

This paper is generally related to a class of research which demonstrates that in a model where the government has an incomplete set of tax instruments a non-zero capital tax may be optimal in order to mimic the missing taxes (see Correia (1996), Armenter and Albanesi (2009), and Jones et al. (1997)). This paper combines two related strands of the literature within this class of research. The first strand examines the optimal capital tax in a calibrated life cycle model but does not assess the importance of how human capital is accumulated. Conesa et al. (2009), henceforth CKK, solve a calibrated life cycle model to determine the optimal capital tax in a model with exogenous human capital accumulation. They determine that the optimal tax policy is a flat 34 percent capital tax and a flat 14 percent labor income tax. They state that a primary motive for imposing a high capital tax is to mimic a relatively larger labor income tax on younger agents when they supply labor relatively less elastically. An agent supplies labor more elastically as he ages because his labor supply is decreasing, and the authors use a utility specification in which the agent’s Frisch labor supply elasticity is a negative function of hours worked. Peterman (2013b) confirms that this is an economically significant motive for the positive capital tax in a model similar to CKK’s model, but concludes that the restriction on the government from being able to tax accidental bequests at a different rate from ordinary capital income is also a large contribution to the positive optimal capital tax. However,

6See Peterman (2013b) for an in depth discussion of motives for a positive capital tax in calibrated OLG model.
7This is model M4 in Conesa et al. (2009). I refer to CKK’s model that abstracts from idiosyncratic earnings risk and within-cohort heterogeneity because they find that these features do not affect the level of the optimal capital tax. Therefore, I also abstract from these features in my benchmark analysis.
8Further work, such as, Karabarbounis (2012) and Peterman (2012), demonstrate that incorporating endogenous fluctuations in
Cespedes and Kuklik (2012) find that when a non-linear mapping between hours and wages is incorporated into a model similar to CKK hours become more persistent and the optimal capital tax fall significantly. One exception is Peterman (2013a) which compares optimal tax policy in a model with exogenous human capital accumulation and LBD, but does not assess the effect of adding LOD. This paper extends these previous life cycle studies of optimal tax policy by determining how all three forms of human capital accumulation affect the optimal capital tax policy.

This paper is related to a second strand of the literature that analyzes the effect of how human capital is accumulated on the tradeoff between labor and capital taxes but not in a life cycle model. For example, both Jones et al. (1997) and Judd (1999) examine optimal capital tax in an infinitely lived agent model in which agents are required to use market goods to acquire human capital similar to ordinary capital. They find that if the government can distinguish between pure consumption and human capital investment, then, similar to a model with exogenous human capital accumulation, it is not optimal to distort either human or physical capital accumulation in the long run. Moreover, Reis (2007) shows in a similar model that if the government cannot distinguish between consumption and human capital investment, then similar to a model with exogenous human capital accumulation, the optimal capital tax is still zero as long as the level of capital does not influence the relative productivity of human capital. Chen et al. (2010) find in an infinitely lived agent model with labor search, that including endogenous human capital accumulation through both LBD and LOD causes the optimal capital tax to increase, relative to a model with exogenous human capital accumulation, because a higher capital tax unravels the labor market frictions. This second strand of literature does not account for the effects of endogenous human capital accumulation through life cycle channels. Since CKK and Peterman (2013b) demonstrate that these life cycle channels are quantitatively important for motivating a positive capital tax this paper includes them. Overall, this paper combines both strands of the literature and determines the effect on optimal capital tax policy of how human capital is accumulated in a life cycle model.

9One paper that combines both strands is Jacobs and Bovenberg (2009), which analyzes the tradeoff between a labor and capital tax in a life cycle model with pre-work education. The authors find that in a two-period model where agents acquire education in the first period and work in the second period the optimal capital tax is generally positive if educational investment is not verifiable. The tax on capital reduces the tax on labor income, which in turn reduces the distortions on the benefit to education. Jacobs and Bovenberg (2009) is related to the current work; however they focus on human capital accumulation prior to working while this study examines the results of endogenous human capital accumulation once an agent begins to work. In another related paper, Best and Kleven (2012) examine how introducing LBD changes the optimal general income tax in a model without savings. Best and Kleven (2012) shows that introducing LBD causes the government to change the progressivity of the tax rates such that the relative tax on young income increases. This result is similar to the result in this paper. However, in this paper when the government can use either a progressive tax on labor or a non-zero tax on capital to mimic age-dependent taxes they choose the tax on capital.

10The labor market frictions in Chen et al. (2010) cause a lower level of employment in their economy. A capital tax causes the wage discount to increase, thus causing firms to post more vacancies which in turn causes an increase in worker participation.
This paper is organized as follows: Section 2 examines an analytically tractable version of the model to demonstrate that including endogenous human capital accumulation creates a motive for the government to condition labor income taxes on age. Section 3 describes the full model and the competitive equilibrium used in the quantitative exercises. The calibration and functional forms are discussed in section 4. Section 5 describes the computational experiment, and section 6 presents the results. Section 7 tests the sensitivity of the results with respect to calibration parameters and utility specifications, while section 8 concludes.

2 Analytical Model

In this section, I demonstrate that adding endogenous human capital accumulation overturns the result from Garriga (2001) that for a specific utility function that is separable and homothetic in both consumption and labor the government has no incentive to condition labor income taxes on age.\footnote{A similar set of results for the exogenous and LBD model are in Peterman (2013a). I include them in this paper for completeness.} It is useful to determine if the government wants to use age-dependent taxes because both Garriga (2001) and Erosa and Gervais (2002) show that if the government wants to condition taxes on age and cannot do so then the optimal capital tax will generally be non-zero in order to mimic this age-dependent tax. I begin this section by setting up the agent’s problem and demonstrating why a capital tax is an imperfect substitute for age-dependent taxes on labor income. Next, using the primal approach, I solve for the optimal tax policy in the exogenous model, with a benchmark utility function that is homothetic with respect to consumption and hours worked, \(U(c, h) = \frac{c^{1-\sigma}}{1-\sigma} - \frac{\chi(h)^{1+\frac{1}{\sigma_2}}}{1+\frac{1}{\sigma_2}} \). I confirm the Garriga (2001) result that the government has no incentive to condition labor income taxes on age and therefore the optimal capital tax is zero. I show that adding endogenous human capital accumulation to this model causes the optimal tax policy to include age-dependent taxes. Therefore these results, coupled with the previous findings in Garriga (2001) and Erosa and Gervais (2002), demonstrate that if age-dependent taxes are unavailable in the endogenous model, then a non-zero capital tax is optimal. I also demonstrate the channels by which the forms of endogenous human capital accumulation affect the optimal tax policy.

I derive these analytical results in a tractable two-period version of the computational model. For tractability purposes, the features I abstract from include: retirement, population growth, progressive tax policy, and conditional survivability. Additionally, I assume that the marginal products of capital and labor are constant. This assumption permits me to focus on the life cycle elements of the model, in that changes to the tax system do not affect the pre-tax wage or rate of return. Since the factor prices do not vary, I suppress their time subscripts in this section. All of these assumptions are relaxed in the computational model.
2.1 Exogenous Age-Specific Human Capital

2.1.1 General Set-up

In the analytically tractable model, agents live with certainty for two periods, and their preferences over consumption and labor are represented by

\[U(c_{1,t}, h_{1,t}) + \beta U(c_{2,t+1}, h_{2,t+1}) \]

(1)

where \(\beta \) is the discount rate, \(c_{j,t} \) is the consumption of an age \(j \) agent at time \(t \), and \(h_{j,t} \) is the percent of the time endowment the agent works.\(^{12} \) Age-specific human capital is normalized to unity when the agent is young. At age two, age-specific human capital is \(\epsilon_2 \). The agent maximizes equation 1 with respect to consumption and hours subject to the following constraints

\[c_{1,t} + a_{1,t} = (1 - \tau_{h,1}) h_{1,t} w \]

(2)

and

\[c_{2,t+1} = (1 + r(1 - \tau_k)) a_{1,t} + (1 - \tau_{h,2}) \epsilon_2 h_{2,t+1} w, \]

(3)

where \(a_{1,t} \) is the amount young agents save, \(\tau_{h,j} \) is the tax rate on labor income for an agent of age \(j \), \(\tau_k \) is the tax rate on capital income, \(w \) is the efficiency wage for labor services, and \(r \) is the rental rate on capital. I assume that the tax rate on labor income can be conditioned on age; however, the tax rate on capital income cannot.\(^{13} \) I combine equations 2 and 3 to form a joint intertemporal budget constraint:

\[c_{1,t} + \frac{c_{2,t+1}}{1 + r(1 - \tau_k)} = w(1 - \tau_{h,1}) h_{1,t} + \frac{w(1 - \tau_{h,2}) \epsilon_2 h_{2,t+1}}{1 + r(1 - \tau_k)}. \]

(4)

The agent’s problem is to maximize equation 1 subject to 4. The agent’s first order conditions are

\[\frac{U_{h1}(t)}{U_{c1}(t)} = -w(1 - \tau_{h,1}), \]

(5)

\[\frac{U_{h2}(t + 1)}{U_{c2}(t + 1)} = -w \epsilon_2(1 - \tau_{h,2}), \]

(6)

\(^{12} \)Time working is measured as a percentage of endowment and not in hours. However, for expositional convenience, I also refer to \(h_{j,t} \) as hours.

\(^{13} \)Agents only live for two periods in the analytically tractable model so they choose not to save when they are old. Therefore, in this model the restriction on the capital tax policy is not binding.
and
\[
\frac{U_{c1}(t)}{U_{c2}(t+1)} = \beta(1+r(1-\tau_k)),
\]
(7)

where \(U_{c1}(t) \equiv \frac{\partial U(c_{1,t},h_{1,t})}{\partial c_{1,t}}\). Given a social welfare function, prices, and taxes, these first order conditions, combined with the intertemporal budget constraint, determine the optimal allocation of \((c_{1,t},h_{1,t},c_{2,t+1},h_{2,t+1})\).

2.1.2 Tax on Capital Mimics Age-Dependent Tax on Labor

To demonstrate why a capital tax has a similar effect to an age-dependent labor income tax, I derive the intertemporal Euler equation by combining equations 5, 6, and 7:

\[
\varepsilon_2 \frac{U_{h1}(t)}{U_{h2}(t+1)} = \beta(1+r(1-\tau_k)) \frac{1-\tau_{h,1}}{1-\tau_{h,2}}.
\]
(8)

Equation 8 demonstrates that if the government wants to create a wedge on the marginal rate of substitution by varying the labor income tax rate by age, then \(\tau_k\) is an alternative option. A positive (negative) capital tax induces a wedge on the marginal rate of substitution that is similar to a relatively larger tax on young (old) labor income.

2.1.3 Primal Approach

I use the primal approach to determine the optimal tax policy.\(^{14}\) I use a social welfare function that maximizes the expected utility of a newborn and discounts future generations with social discount factor \(\theta\) (see section 5 for more details),

\[
[U(c_{2,0},h_{2,0})/\theta] + \sum_{t=0}^{\infty} \theta^t [U(c_{1,t},h_{1,t}) + \beta U(c_{2,t+1},h_{2,t+1})].
\]
(9)

The government maximizes this objective function with respect to two constraints: the implementability constraint and the resource constraint.\(^{15}\) The implementability constraint is the agent’s intertemporal budget constraint, with prices and taxes replaced by his first order conditions (equations 5, 6, and 7)

\[
c_{1,t}U_{c1}(t) + \beta c_{2,t+1}U_{c2}(t+1) + h_{1,t}U_{h1}(t) + \beta h_{2,t+1}U_{h2}(t+1) = 0.
\]
(10)

\(^{14}\)See Lucas and Stokey (1983) or Erosa and Gervais (2002) for a full description of the primal approach.

\(^{15}\)The government budget constraint is a third constraint. Due to Walras’ Law, I only need to include two of three constraints in the Lagrangian and leave out the government budget constraint.
Including this constraint ensures that any allocation the government chooses can be supported by a competitive equilibrium. The resource constraint is

\[c_{1,t} + c_{2,t} + K_{t+1} - K_t + G_t = r K_t + w(h_{1,t} + h_{2,t} \varepsilon_2). \]

(11)

Including the benchmark utility specification, the Lagrangian the government maximizes is

\[
\mathcal{L} = c_{1,t}^{1-\sigma_1} h_{1,t}^{1+\frac{1}{\sigma_1}} + \beta c_{2,t+1}^{1-\sigma_1} h_{2,t+1}^{1+\frac{1}{\sigma_1}} - \rho_t(c_{1,t} + c_{2,t} + K_{t+1} - K_t + G_t - r K_t - w(h_{1,t} + h_{2,t} \varepsilon_2)) \\
- \rho_{t+1} \theta(c_{1,t+1} + c_{2,t+1} + K_{t+2} - K_{t+1} + G_{t+1} - r K_{t+1} - w(h_{1,t+1} + h_{2,t+1} \varepsilon_2)) \\
+ \lambda_t(c_{1,t}^{1-\sigma_1} - \beta c_{2,t+1}^{1-\sigma_1} - \beta \chi h_{1,t}^{1+\frac{1}{\sigma_1}} - \beta \chi h_{2,t+1}^{1+\frac{1}{\sigma_1}})
\]

(12)

where \(\rho \) is the Lagrange multiplier on the resource constraint and \(\lambda \) is the Lagrange multiplier on the implementability constraint.

2.1.4 Optimal Tax Policy

I solve for the optimal tax policy in the analytically tractable exogenous model. The formulation of the government’s problem and their first order conditions for this model can be found in appendix A.1. Combining the government’s first order conditions generates the following expression for optimal labor income taxes:

\[
\frac{1 - \tau_{h,2}}{1 - \tau_{h,1}} = \frac{1 + \lambda_t (1 + \frac{1}{\sigma_1})}{1 + \lambda_t (1 + \frac{1}{\sigma_1})} = 1.
\]

(13)

Equation 13 demonstrates that the government has no incentive to condition labor income taxes on age when age-specific human capital is exogenous.\(^{16}\)

Utilizing the first order condition from the Lagrangian with respect to capital and consumption leads to the following equation:

\[
\left(\frac{c_{1,t}}{c_{2,t+1}} \right)^{-\sigma_1} = \beta (1 + r).
\]

(14)

\(^{16}\)This result is specific to this utility function. See Garriga (2001) for further details.
Applying the benchmark utility function to equation 7 provides the following relationship:

\[
\left(\frac{c_{1,t}}{c_{2,t+1}} \right)^{-\sigma_1} = \beta(1 + r(1 - \tau_k)).
\] (15)

Equations 14 and 15 demonstrate that in order for the household to choose the optimal allocation indicated by the primal approach, the capital tax must equal zero.\footnote{Regardless of whether the government can condition labor income taxes on age, in this model they do not want to tax capital because there is no desire to mimic an age-dependent tax on labor income. When the government cannot condition labor income taxes on age then the Lagrangian includes an additional constraint:

\[
\mathcal{E}_2 \frac{U_{h_1}(t)}{U_{c_1}(t)} = \frac{U_{h_2}(t + 1)}{U_{c_2}(t + 1)}.
\] (16)

However, in the analytically tractable model with exogenous human capital accumulation, this constraint is not binding and thus the Lagrange multiplier equals zero.}

2.2 Learning-by-Doing

2.2.1 Including LBD Creates Motive for Age-Dependent Taxes on Labor Income

Next, I introduce LBD into the exogenous model. In the LBD model, age-specific human capital for a young agent is normalized to unity. Age-specific human capital for an old agent is determined by the function \(s_2(h_{1,t})\). The function \(s_2(h_{1,t})\) is a positive and concave function of the hours worked when young. In this model agents maximize the same utility function subject to

\[
c_{1,t} + a_{1,t} = (1 - \tau_{h,1})h_{1,t}w
\] (17)

and

\[
c_{2,t+1} = (1 + r(1 - \tau_k))a_{1,t} + (1 - \tau_{h,2})s_2(h_{1,t})h_{2,t+1}w.
\] (18)

The agent’s first order conditions are given by

\[
\frac{U_{h_1}(t)}{U_{c_1}(t)} = -\left[w(1 - \tau_{h,1}) + \beta \frac{U_{c_2}(t + 1)}{U_{c_1}(t)}w(1 - \tau_{h,2})h_{2,t+1} s_{h_1}(t + 1)\right],
\] (19)

\[
\frac{U_{h_2}(t + 1)}{U_{c_2}(t + 1)} = -w s_2(h_{1,t})(1 - \tau_{h,2}),
\] (20)

and

\[
\frac{U_{c_1}(t)}{U_{c_2}(t + 1)} = \beta(1 + r(1 - \tau_k)).
\] (21)
The first order conditions with respect to h_2 and a_1 are similar in the LBD (equations 20 and 21) and
exogenous models (equations 6 and 7). However, the first order condition with respect to h_1 is different in
the two models (equations 19 and 5) because working has the additional human capital benefit in the LBD
model. This human capital benefit also alters the implementability constraint. Suppressing the arguments of
the skills function, the implementability constraint in the LBD model is

$$c_1 U_{c1}(t) + \beta c_{2,t+1} U_{c2}(t+1) + h_{1,t} U_{h1}(t) - \frac{\beta h_{1,t} U_{h2}(t+1) h_2 s_{h1}(t+1)}{s_2} + \beta h_{2,t+1} U_{h2}(t+1) = 0,$$

(22)

where $s_{h1}(t+1)$ represents the partial derivative of the skill function for an older agent with respect to hours
worked when young.

The formulation for the government’s problem and the resulting first order conditions (utilizing the
benchmark utility function) are in appendix A.2. Combining the first order conditions from the government’s
problem and suppressing the time arguments yields the following ratio for optimal labor income taxes,

$$\frac{1 - \tau_{h,1}}{1 - \tau_{h,2}} = \frac{\left[1 + h_{2,t+1} s_{h2} \right] + \lambda \left(1 + \frac{h_{1,t} s_{h2}}{s_2} \right) \left(1 + \frac{1}{\sigma_2} \right)}{1 + \lambda \left(1 + \frac{1}{\sigma_2} \right) - \beta h_{2,t+1} h_{1,t} - \beta \left[\frac{s_{h2}}{s_2} \right] \left(1 + \lambda \left(1 + \frac{h_{1,t} s_{h2}}{s_2} \right) \left(1 + \frac{1}{\sigma_2} \right) - h_1 \left(\frac{s_{h2}}{s_2} \right)^2 - \frac{s_{h2} s_{h2}}{s_2} \right]} - \frac{h_{2,t+1} s_{h2}}{1 + r(1 - \tau_k)},$$

(23)

Equation 23 demonstrates that generally in the LBD model the government has an incentive to condition
labor income taxes on age. This result contrasts with the exogenous model, in which the government has no
incentive to condition labor income taxes on age (see equation 13). As Garriga (2001), Erosa and Gervais
(2002), and Peterman (2013b) demonstrate, if the government wants to condition labor income taxes on age
but age-dependent taxes are not allowed then the government will typically use a non-zero capital tax to
mimic this type of age-dependent tax policy.

2.2.2 LBD Enhances Motive for Positive Tax on Capital

In order to get a sense of which agent’s labor income the government might want to tax at a relatively higher
rate, I examining the intertemporal Euler equation (determined by combining equations 19, 20 and 21):

$$s_2(h_{1,t}) \frac{U_{h1}(t)}{U_{h2}(t+1)} = \beta (1 + r(1 - \tau_k)) \frac{1 - \tau_{h,1}}{1 - \tau_{h,2}} + \beta h_{2,t+1} s_{h1}(t+1).$$

(24)
Including LBD causes the intertemporal Euler equation to have an extra term that is positive (see equation 8 and equation 24). Therefore, holding all else equal and setting $\varepsilon_2 = s_2$, the tax on young labor income would need to be relatively higher in order to induce the same wedge on the marginal rate of substitution in the LBD model.

Examining the Frisch elasticities in the exogenous and LBD models, provides the intuition why adding LBD increases the optimal relative tax on young labor income or tax on capital. Since the functional forms of these elasticities extend to a model where agents live for more than two periods, I denote an agent’s age with i. In the exogenous model, the Frisch elasticity simplifies to $\Xi_{\text{exog}} = \sigma_2$. The Frisch elasticity in the LBD model is, $\Xi_{\text{LBD}} = \frac{\sigma_2}{1 - \frac{h_{t+1} + \tau_{t+1}}{f_{t+1}}(\tau_t f_{t+1} h_{t+1} - h_t h_{t+1})}$.

The Frisch elasticity in the exogenous model is constant and valued at σ_2. In the LBD model, the extra terms in Ξ_{LBD} increase the size of the denominator, thus holding hours and consumption constant between the two models, $\Xi_{\text{exog}} > \Xi_{\text{LBD}}$. Intuitively, the inclusion of the human capital benefit makes workers less responsive to a one-period change in wages since the wage benefit is only part of their total compensation for working in the LBD model. Moreover, the human capital benefit does not have a constant effect on an agent’s Frisch elasticity over his lifetime. The relative importance of the human capital benefit decreases over an agent’s lifetime because he has fewer periods to use his higher human capital as he ages. Therefore, adding LBD causes a young agent to supply labor relatively less elastically than an older agent. This shift in relative elasticities creates an incentive for the government to tax the labor income of younger agents at a relatively higher rate. Thus, if the government cannot condition labor income taxes on age, then the capital tax will be higher in the LBD model. I use the term “elasticity channel” to describe the effect on optimal tax policy caused by a change in the Frisch elasticity from including endogenous human capital. The elasticity channel is responsible for the change in optimal tax policy from including LBD.

\[\Xi_{\text{LBD}} = \frac{\sigma_2}{1 - \frac{h_{t+1} + \tau_{t+1}}{f_{t+1}}(\tau_t f_{t+1} h_{t+1} - h_t h_{t+1})},\]

18 This is the Frisch elasticity with respect to a temporary increase in the wage. Therefore, one must distinguish between w_t and w_{t+1}.

19 For the human capital benefit to decline over the lifetime, it is sufficient to assume agents work for a finite number of periods.

20 Alternative intuition for this result can be demonstrated in the commodity tax framework of Corlett and Hague (1953). In their static framework, the government wants to tax leisure. However, if they cannot directly tax leisure, the government will tax commodities that are more complementary to leisure at a higher rate. Viewing this simple two generation model in that framework, adding LBD raises the relative opportunity cost of leisure when agents are young so young labor is less of substitute (more of a complement) with leisure. This change leads the government to want to increase the tax on young labor. Moreover, if the government cannot use age-dependent taxes then they will increase the tax on capital to implicitly tax consumption from the old at a relatively higher rate since LBD makes consumption and leisure more complementary for the older agents than the younger agents.
2.3 Learning-or-Doing

2.3.1 Including LOD Creates Motive for Age-Dependent Taxes on Labor Income

I include LOD in the exogenous model to demonstrate that this form of endogenous age-specific human
capital accumulation also creates a motive for the government to condition labor income taxes on age.
Similar to the other models, age-specific human capital for a young agent is set to unity. Age-specific human
capital for an old agent is determined by the function $s_2(n_{1,t})$ which is a positive and concave function
of the hours spent training when an agent is young ($n_{1,t}$). In the LOD model I need a utility function that
incorporates training. I alter the benchmark utility specification so that it consistently incorporates the
disutility of non-leisure activities, $c_1 - \frac{\sigma_1}{1-\sigma_1} - \frac{\chi}{\chi + s_2}$. In this model agents maximize their utility function
subject to

$$c_{1,t} + a_{1,t} = (1 - \tau h_1)h_{1,t}w$$

and

$$c_{2,t+1} = (1 + r(1 - \tau h_2))a_{1,t} + (1 - \tau h_2)s_2(n_{1,t})h_{2,t+1}w.$$

(25)

(26)

The agent’s first order conditions are given by

$$\frac{U_{h_1}(t)}{U_{c1}(t)} = -[w(1 - \tau h_1)],$$

(27)

$$\frac{U_{h2}(t+1)}{U_{c2}(t+1)} = -w s_2(n_{1,t})(1 - \tau h_2),$$

(28)

$$\frac{U_{c1}(t)}{U_{c2}(t+1)} = \beta(1 + r(1 - \tau h_2)),$$

(29)

and

$$\frac{U_{n1}(t)}{U_{c2}(t+1)} = -\beta w(1 - \tau h_2)s_2(n_{1,t})h_{2,t+1}.$$

(30)

The first order conditions with respect to h_1, h_2, and a_1 are similar in the LOD model (equations 27, 28,
and 29) and the exogenous model (equations 5, 6, and 7). However, since agents have the additional choice
variable n_1 in the LOD model, the have an additional first order condition with respect to this variable
(equation 30). This new first order condition requires an additional constraint in the government’s Lagrange
that ensures that the allocation the government chooses properly equates an individual’s disutility of training
when young and working when old (see equations 28 and 30). This constraint simplifies to $U_{n1}(t)s_2 =
\beta U_{h2}(t+1)h_{2,t+1}s_2(t+1)$. I use η_t as the Lagrange multiplier on this new constraint.
The formulation of the government’s problem and resulting first order conditions are provided in appendix A.3. Combing the first order conditions yields the following relationship for optimal taxes on labor income:

\[
\frac{1 - \tau_{h,2}}{1 - \tau_{h,1}} = \frac{1 + \lambda_t \left(1 + \frac{h_{1,t}}{\sigma_2(h_{1,t} + n_{1,t})} \right) + \eta_{s_{1}}}{1 + \lambda_t \left(1 + \frac{1}{\sigma_2} \right) - \eta_{s_{1}}(t + 1) \left(1 + \frac{1}{\sigma_2} \right)}.
\]

Equation 31 demonstrates that the government generally has an incentive to condition labor income taxes on age when LOD is introduced into the model.

Although equation 31 shows that including LOD creates an incentive for the government to condition labor income taxes on age, it is unclear at which age the government wants to impose a relatively higher labor income tax. Comparing equations 13 and 31, there are two channels through which introducing LOD changes the optimal tax policy. The first channel results from using a utility function that is non separable in training and labor. The non separability affects the optimal tax policy through the elasticity channel since it causes LOD to alter the Frisch elasticity. This channel causes the numerator of the ratio to include the additional term \(h_{1,t}^{1/2}h_{1,t}^{1/2}n_{1,t}^{1/2}\). As a result of this new term, the expression decreases.

The second channel results from the intertemporal link created by the additional constraints. I refer to this channel as the savings channel because the additional intertemporal link arises because agents can save via training or ordinary assets. This second channel causes the inclusion of the additional terms \(-\eta_{s_{1}}(t + 1)\left(1 + \frac{1}{\sigma_2} \right)\) and \(\frac{\eta_{s_{1}}}{\sigma_2(h_{1,t} + n_{1,t})}\) in the denominator and numerator, respectively.\(^{21}\) Assuming that \(\eta_{s_{1}}\) is positive, these additional terms cause the expression to increase.\(^{22}\) Thus, the two channels have opposing effects on the optimal tax policy, and the overall effect is unclear.

Examining the Frisch labor supply elasticities provides intuition for how the first channel affects the optimal tax policy. In the exogenous model, the Frisch elasticity for the benchmark utility specification is constant, \(\sigma_2\). Since the altered utility function is not additively separable in time spent working and training, the Frisch labor supply elasticity is not constant in the LOD model. The Frisch elasticity for the altered utility function is \(\Xi_{LOD} = \frac{\sigma_2(h+n)}{h}\). This functional form implies that an agent supplies labor relatively more elastically when LOD is included in the model because the agent has a substitute for working in the form of training. Additionally, the effect on the Frisch elasticity is larger when he spends a larger proportion of his non-leisure time training (or when training is a better substitute for generating lifetime income). Therefore, if an agent spends less time training as he ages, then he will supply labor relatively more elastically when he

\(^{21}\)The term in the numerator comes from both the intertemporal link and the nonseparability of the utility function. However, I group both terms in the savings channel because the impact on the optimal tax policy will be in the same direction as the other term.

\(^{22}\)The sign of \(\eta_{s_{1}}\) will depend on whether the government wants to increase the relative incentive to save with training or capital. If \(\eta_{s_{1}}\) is positive it implies that the government wants to increase the relative incentive to save with training. I generally find in the computational simulations that \(\eta_{s_{1}}\) is positive and therefore treat it as positive in the exposition.
is young, and the government would want to tax the labor income from young agents at a relatively lower rate. One way to mimic this type of age-dependent tax is to decrease the capital tax. Therefore, the elasticity channel from LOD causes a decrease in the capital tax.

Examining an agent’s first order condition with respect to training demonstrates how the savings channel affects the optimal tax policy. An agent optimizes his choices such that the marginal disutility of training when he is young equals the marginal benefit of training \(U_{n1}(t) = \frac{U_{c1}(t)(1-\tau_h,2)(2+1)\tau_{n1}(t+1)}{1+(1-\tau_h,2)} \). The marginal benefit is increased by increasing the tax on capital or by decreasing the tax on older labor income. By adopting either of these changes, the government makes it relatively more beneficial for the agent to use training to save as opposed to ordinary capital. Therefore, the government decreases the capital tax to promote more savings via human capital. One reason that the government wants to increase the capital tax is to unwind the distortion to savings behavior that are induced by a positive labor income tax.

3 Computational Model

Next, I determine the direction and magnitude of the effect of how human capital is accumulated on optimal capital tax policy in a less parsimonious version of the model. I solve for the optimal tax policy in separate versions of the model with exogenous human capital accumulation, LBD and LOD. The exogenous model is adapted from CKK; however I use a different benchmark utility function which is homothetic and separable so that the elasticity channel does not effect the optimal tax policy in the exogenous model. This utility function is attractive because the Frisch labor supply elasticity in the exogenous model is exogenously determined as opposed to being a function of the level of labor supply. This flexibility allows me to isolate the effects of the elasticity channel on the optimal tax policy. Additionally, since CKK and Peterman (2013a) find that neither idiosyncratic earnings risk nor heterogenous ability types are important motives for a positive capital income tax, I exclude these sources of heterogeneity in my benchmark model.

3.1 Demographics

In the computational model, time is assumed to be discrete, and there are J overlapping generations. Conditional on being alive at age \(j \), \(\Psi_j \) is the probability of an agent living to age \(j+1 \). All agents who live to an age of \(J \) die in the next period. If an agent dies with assets, the assets are confiscated by the government and distributed equally to all the living agents as transfers \((Tr_t) \). All agents are required to retire at an exogenously set age \(j_r \).

In each period a cohort of new agents is born. The size of the cohort born in each period grows at rate
Given a constant population growth rate and conditional survival probabilities, the time invariant cohort shares, \(\{ \mu_j \}_{j=1} \), are given by

\[
\mu_j = \frac{\Psi_j - 1}{1 + n \mu_{j-1}}, \text{for } i = 2, \ldots, J, (32)
\]

where \(\mu_1 \) is normalized such that

\[
\sum_{j=1}^{J} \mu_j = 1. (33)
\]

3.2 Individual

An individual is endowed with one unit of productive time per period that he divides between leisure and non-leisure activities. In the exogenous and LBD models the non-leisure activity is providing labor. In the LOD model the non-leisure activities include training and providing labor services to the market. An agent chooses consumption as well as how to spend his time endowment in order to maximize his lifetime utility

\[
u(c_j, h_j + n_j) + \sum_{s=1}^{J-1} \beta^s \prod_{q=1}^{s}(\Psi_q)u(c_{s+1}, h_{s+1} + n_{s+1}), (34)\]

where \(c_j \) is the consumption of an agent at age \(j \), \(h_j \) is the hours spent providing labor services, and \(n_j \) is the time spent training. Agents discount the next period’s utility by the product of \(\Psi_j \) and \(\beta \). \(\beta \) is the discount factor conditional on surviving, and the unconditional discount rate is \(\beta \Psi_j \).

In the exogenous model an agent’s age-specific human capital is \(\varepsilon_j \). In the endogenous models, an agent’s age-specific human capital, \(s_j \), is endogenously determined. In the LBD model \(s_j \) is a function of a skill accumulation parameter, previous age-specific human capital, and time worked, denoted by \(s_j = S_{LBD}(\Omega_{j-1}, s_{j-1}, h_{j-1}) \). In the LOD model, \(s_j \) is a function of a skill accumulation parameter, previous age-specific human capital, and time spent training, denoted by \(s_j = S_{LOD}(\Omega_{j-1}, s_{j-1}, n_{j-1}) \). \(\{ \Omega_j \}_{j=1}^{J-1} \) is a sequence of calibration parameters that are set so that in the endogenous models, under the baseline-fitted U.S. tax policy, the agent’s choices result in an agent having the same age-specific human capital as in the exogenous model. Individuals command a labor income of \(h_j \varepsilon_j w_t \) in the exogenous model and \(h_j s_j w_t \) in the endogenous model. Agents split their labor income between consumption and saving using a risk-free asset. An agent’s level of assets is denoted \(a_j \), and the asset pays a pre-tax net return of \(r_t \).
3.3 Firm

Firms are perfectly competitive with constant returns to scale production technology. Aggregate technology is represented by a Cobb-Douglas production function. The aggregate resource constraint is,

\[C_t + K_{t+1} - (1 - \delta)K_t + G_t \leq K^\alpha_t N^{1-\alpha}_t, \]

where \(K_t, C_t, \) and \(N_t \) represent the aggregate capital stock, aggregate consumption, and aggregate labor (measured in efficiency units), respectively. Additionally, \(\alpha \) is the capital share and \(\delta \) is the depreciation rate for physical capital. Unlike the analytically tractable model, I do not assume a linear production function in the computational model, so prices are determined endogenously and fluctuate with regard to the aggregate capital and labor.

3.4 Government Policy

The government has two fiscal instruments to finance its consumption, \(G_t, \) which is in an unproductive sector.\(^{23}\) First, the government taxes capital income, \(y_k \equiv r_t(a + Tr_t), \) according to a capital income tax schedule \(T^K[y_k]. \) Second, the government taxes each individual’s taxable labor income. Part of the pre-tax labor income is accounted for by the employer’s contributions to social security, which is not taxable under current U.S. tax law. Therefore, the taxable labor income is \(y_l \equiv w_is_jh_j(1 - 0.5\tau_{ss}), \) which is taxed according to a labor income tax schedule \(T^l[y_l]. \) I impose four restrictions on the labor and capital income tax policies. First, I assume human capital is unobservable, meaning that the government cannot tax human capital accumulation. Second, I assume the rates cannot be age-dependent. Third, both of the taxes are solely functions of the individual’s relevant taxable income in the current period. Finally, I rule out the use of lump sum taxes.

In addition to raising resources for consumption in the unproductive sector, the government runs a pay-as-you-go (PAYGO) social security system. I include a simplified social security program in the model because Peterman (2013b) demonstrates that excluding this type of program in a model with exogenously determined retirement causes unrealistic life cycle profiles. In this reduced-form social security program, the government pays \(SS_t \) to all individuals that are retired. Social security benefits are determined such that retired agents receive an exogenously set fraction, \(b_t, \) of the average income of all working individuals.\(^{24}\) Social security is financed by taxing labor income at a flat rate, \(\tau_{ss,t}. \) The payroll tax rate \(\tau_{ss,t} \) is set to

\(^{23}\)Including \(G_t \) such that it enters the agent’s utility function in an additively separable manner is an equivalent formulation.

\(^{24}\)Although an agent’s social security benefits are a function of the average income of all workers, since all agents are homogenous within a cohort, the benefits are directly related to an individual’s personal earnings history.
assure that the social security system has a balanced budget each period. The social security system is not considered part of the tax policy that the government optimizes.

3.5 Definition of Stationary Competitive Equilibrium

In this section I define the competitive equilibrium for the exogenous model. See appendix B for the definition of the competitive equilibriums in the endogenous models.

Given a social security replacement rate b, a sequence of exogenous age-specific human capital $\{\varepsilon_j\}_{j=1}^{J}$, government expenditures G, and a sequence of population shares $\{\mu_j\}_{j=1}^{J}$, a stationary competitive equilibrium in the exogenous model consists of the following: a sequence of agent allocations, $\{c_j, a_{j+1}, h_j\}_{j=1}^{J}$, a production plan for the firm (N, K), a government labor tax function $T^l : \mathbb{R}_+ \to \mathbb{R}_+$, a government capital tax function $T^k : \mathbb{R}_+ \to \mathbb{R}_+$, a social security tax rate τ_{ss}, a utility function $U : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, social security benefits SS, prices (w, r), and transfers Tr such that:

1. Given prices, policies, transfers, and benefits, the agent maximizes equation 34 subject to

 \[c_j + a_{j+1} = w\varepsilon_j h_j - \tau_{ss} w\varepsilon_j h_j + (1 + r)(a_j + Tr) - T^l[w\varepsilon_j h_j(1 - 0.5\tau_{ss})] - T^k[r(a_j + Tr)], \]

 for $j < j_r$, and

 \[c_j + a_{j+1} = SS + (1 + r)(a_j + Tr) - T^k[r(a_j + Tr)], \]

 for $j \geq j_r$.

 Additionally, \(c \geq 0, 0 \leq h \leq 1, a_j \geq 0, a_1 = 0.\) \(38\)

2. Prices w and r satisfy

 \[r = \alpha \left(\frac{N}{K} \right)^{1-\alpha} - \delta \]

 and

 \[w = (1 - \alpha) \left(\frac{K}{N} \right)^{\alpha}. \]

3. The social security policies satisfy

 \[SS = b \frac{wN}{\sum_{j=1}^{J-1} \mu_j} \]

 and

 \[\tau_{ss} = \frac{ss \sum_{j=1}^{J} \mu_j}{w \sum_{j=1}^{J-1} \mu_j}. \]

4. Transfers are given by

 \[Tr = \sum_{j=1}^{J} \mu_j (1 - \Psi_j) a_{j+1}. \]

5. Government balances its budget

 \[G = \sum_{j=1}^{J} \mu_j T^k[r(a_j + Tr)] + \sum_{j=1}^{J-1} \mu_j T^l[w\varepsilon_j h_j(1 - 0.5\tau_{ss})]. \]

18
6. The market clears

\[
K = \sum_{j=1}^{J} \mu_j a_j, \tag{45}
\]

\[
N = \sum_{j=1}^{J} \mu_j \varepsilon_j h_j, \tag{46}
\]

and

\[
\sum_{j=1}^{J} \mu_j \varepsilon_j + \sum_{j=1}^{J} \mu_j a_{j+1} + G = K^\alpha N^{1-\alpha} + (1-\delta)K. \tag{47}
\]

4 Calibration and Functional Forms

To determine the optimal tax policy it is necessary to choose functional forms and calibrate the model’s parameters. Calibrating the models involves a two-step process. The first step is choosing parameter values for which there are direct estimates in the data. These parameter values are in table 1. Second, to calibrate the remaining parameters, values are chosen so that under the baseline-fitted U.S. tax policy certain targets in the model match the values observed in the U.S. economy.\(^{25}\) These values are in table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retire Age: (j_r)</td>
<td>65</td>
<td>By Assumption</td>
</tr>
<tr>
<td>Max Age: (J)</td>
<td>100</td>
<td>By Assumption</td>
</tr>
<tr>
<td>Surv. Prob: (\Psi_j)</td>
<td>Bell and Miller (2002)</td>
<td>Data</td>
</tr>
<tr>
<td>Pop. Growth: (n)</td>
<td>1.1%</td>
<td>Data</td>
</tr>
<tr>
<td>Firm Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>.36</td>
<td>Data</td>
</tr>
<tr>
<td>(\delta)</td>
<td>8.33%</td>
<td>(\frac{I}{P} = 25.5%)</td>
</tr>
<tr>
<td>(A)</td>
<td>1</td>
<td>Normalization</td>
</tr>
</tbody>
</table>

Adding endogenous human capital accumulation to the model fundamentally changes the model. Accordingly, if the calibration parameters are the same, then the value of the targets will be different in the endogenous and exogenous models. To assure that all the models match the targets under the baseline-fitted U.S. tax policy, I calibrate the set of parameters based on targets separately in the three models. This calibration implies that these parameters are different in the exogenous and endogenous models.

\(^{25}\)Since these are general equilibrium models, changing one parameter will alter all the values in the model that are used as targets. However, I present targets with the parameter that they most directly correspond to.
4.1 Demographics

In the model, agents are born at a real world age of 20 that corresponds to a model age of 1. Agents are exogenously forced to retire at a real world age of 65. If an individual survives until the age of 100, he dies the next period. I set the conditional survival probabilities in accordance with the estimates in Bell and Miller (2002). I assume a population growth rate of 1.1 percent.

Table 2: Calibration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Exog.</th>
<th>LBD</th>
<th>LOD</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional Discount: β</td>
<td>0.995</td>
<td>0.993</td>
<td>0.997</td>
<td>$K/Y = 2.7$</td>
</tr>
<tr>
<td>Unconditional Discount: $\Psi_j\beta$</td>
<td>0.982</td>
<td>0.980</td>
<td>0.984</td>
<td>$K/Y = 2.7$</td>
</tr>
<tr>
<td>Risk aversion: σ_1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>CKK</td>
</tr>
<tr>
<td>Frisch Elasticity: σ_2</td>
<td>0.5</td>
<td>0.73</td>
<td>0.47</td>
<td>Frisch = $\frac{1}{2}$</td>
</tr>
<tr>
<td>Disutility of Labor: χ</td>
<td>61</td>
<td>46</td>
<td>80</td>
<td>Avg. $h_j + n_j = \frac{1}{3}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Government Parameters</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Υ_0</td>
<td>.258</td>
<td>.258</td>
<td>.258</td>
<td>Gouveia and Strauss (1994)</td>
</tr>
<tr>
<td>Υ_1</td>
<td>.768</td>
<td>.768</td>
<td>.768</td>
<td>Gouveia and Strauss (1994)</td>
</tr>
<tr>
<td>G</td>
<td>0.137</td>
<td>0.136</td>
<td>0.13</td>
<td>17% of Y</td>
</tr>
<tr>
<td>b</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>CKK</td>
</tr>
</tbody>
</table>

4.2 Preferences

Agents have time-separable preferences over consumption and labor services, and conditional on survival, they discount their future utility by β. I use the benchmark utility function for the exogenous and LBD models, $\frac{c^{1-\sigma_1}}{1-\sigma_1} - \chi(h_j^{1+\sigma_2})$, and an altered form of this utility function for the LOD model, $\frac{c^{1-\sigma_1}}{1-\sigma_1} - \chi(h_j+n_j^{1+\sigma_2})$.

I determine β such that the capital-to-output ratio matches U.S. data of 2.7.26 One reason that the reduced form social security program is included is to capture the relevant savings motives that affect the capital to output ratio. I determine χ such that under the baseline-fitted U.S. tax policy, agents spend on average one third of their time endowment in non-leisure activities.27 Following CKK, I set $\sigma_1 = 2$, which controls the relative risk aversion.28 Past micro-econometric studies (such as Altonji (1986), MaCurdy (1981), and Domeij and Flodén (2006)) estimate the Frisch elasticity to be between 0 and 0.5. However, more recent research has shown that these estimates may be biased downward. Reasons for this bias include: utilizing weak instruments; not accounting for borrowing constraints; disregarding the life cycle effect of endogenous-age specific human capital; omitting correlated variables such as wage uncertainty; and not

26This is the ratio of fixed assets and consumer durable goods, less government fixed assets to GDP (CKK).
27Using a target of one-third is standard in quantitative exercises. For examples, see CKK, Nakajima (2010), and Garriga (2001).
28Even though CKK use a different utility specification, their specification has a parameter that corresponds to σ_1.

accounting for labor market frictions.29 Therefore, I set σ_2 such that the Frisch elasticity is at the upper bound of the range (0.5). The preference parameters are summarized in table 2.

\subsection*{4.3 Age-Specific Human Capital}

The age-specific human capital parameters that require calibration are different in the exogenous and endogenous models. In the exogenous model, I set $\{\varepsilon_j\}_{j=0}^{b-1}$ so that the sequence matches a smoothed version of the relative hourly earnings estimated by age in Hansen (1993). In the endogenous models I use the same functional form for human capital accumulation as in Hansen and İmrohoroğlu (2009). Specifically, in the LBD model, agents accumulate age-specific human capital according to the following process,

$$s_{j+1} = \Omega_j s_j^{\Phi_1} h_j^{\Phi_2},$$

(48)

where s_j is the age-specific human capital for an agent at age j, Ω_j is an age-specific calibration parameter, Φ_1 controls the importance of an agent’s current human capital on LBD, and Φ_2 controls the importance of time worked on LBD. In the LOD model, agents accumulate human capital according to the following process,

$$s_{j+1} = \Omega_j s_j^{\kappa_1} n_j^{\kappa_2},$$

(49)

where n_j is the percent of an agent’s time endowment he spends training. In this formulation, κ_1 controls the importance of an agent’s current human capital on LOD and κ_2 controls the importance of time training on LOD. In the endogenous models I do not set $\{\varepsilon_j\}_{j=0}^{b-1}$ directly, rather I calibrate the sequence $\{\Omega_j\}_{j=1}^{b-1}$ such that the agent’s equilibrium labor or training choices cause $\{s_j\}_{j=0}^{b-1}$ under the baseline-fitted U.S. tax code to match the age-specific human capital calibrated in the exogenous model ($\{\varepsilon_j\}_{j=0}^{b-1}$).30

To calibrate the rest of the LBD parameters, I rely on the estimates in Chang et al. (2002), setting $\Phi_1 = 0.407$ and $\Phi_2 = 0.326$. Following Hansen and İmrohoroğlu (2009), I set $\kappa_1 = 1$ and $\kappa_2 = 0.004$ in the LOD model. Both functional forms imply full depreciation of skills if individuals choose not to work or train at all in the LBD and LOD models, respectively. In the case of the LBD model, full depreciation will never be binding because agents choose to work large quantities in all periods in the exogenous model which does not include the additional human capital incentive for working (see Peterman (2013b)). In the LOD model, I find that if I include skill accumulation with a function form that was separable in past skills and training time, so as to not imply full depreciation when agents do not train, then the life-cycle profiles to be more

29Some of these studies include Imai and Keane (2004), Domeij and Flodén (2006), Pistaferri (2003), Chetty (2009), and Contreras and Sinclair (2008).

30I calibrate these sets of parameters such that they are smooth over the life cycle.
consistent with formal education as opposed to training. Therefore, I use this nonseparable functional form with the value of $\kappa_1 = 1$ which implies that there is little depreciation of human capital as long as agents use just a small amount of their time endowment for training. The values of κ_2 and $\{\Omega_j\}_{j=1}^{J-1}$ imply that at the start of an agent’s career the ratio of time spent training to working is approximately 10 percent and declines steadily until retirement. Through the agent’s entire working life, the ratio of the average time spent training to market hours is about 6.25 percent. This average value is in line with the calibration target in Hansen and İmrohoroglu (2009).

4.4 Firm

I assume the aggregate production function is Cobb–Douglas. The capital share parameter, α, is set at .36. The depreciation rate is set to target the observed investment output ratio of 25.5 percent. These parameters are summarized in table 1.

4.5 Government Policies and Tax Functions

To calibrate parameters based on the targets, it is necessary to use a baseline tax function that mimics the U.S. tax code so that I can find the parameter values that imply the targets in the models that match the values in the data. I use the estimates of the U.S. tax code in Gouveia and Strauss (1994) for this tax policy, which I refer to as the baseline-fitted U.S. tax policy. The authors match the U.S. tax code to the data using a three parameter functional form,

$$T(y; \Upsilon_0, \Upsilon_1, \Upsilon_2) = \Upsilon_0(y - (y^{-\Upsilon_1} + \Upsilon_2)^{-\frac{1}{\Upsilon_1}}),$$

where y represents the sum of labor and capital income. The average tax rate is principally controlled by Υ_0, and Υ_1 governs the progressivity of the tax policy. To ensure that taxes satisfy the budget constraint, Υ_2 is left free. Gouveia and Strauss (1994) estimate that $\Upsilon_0 = .258$ and $\Upsilon_1 = .768$ when fitting the data. The authors do not fit separate tax functions for labor and capital income. Accordingly, I use a uniform tax system on both sources of income for the baseline-fitted U.S. tax policy. I calibrate government consumption, G, so

31 Guvenen et al. (2009) use an alternative LOD accumulation specification that is additively separable in past skills and training. I find that when I use this specification an agent does not accumulate any assets for the first 10-15 years of their working life, and instead tends to save using skill accumulation. In addition, during this time agents work only the necessary hours to finance consumption causing their labor supply profile to be low and flat (see figure 5 in Guvenen et al. (2009)). Since the shape of these life cycle profiles does not match the data, I choose not to use this functional form.

32 See Kuruscu (2006) and Heckman et al. (1998) for other examples of quantitative studies that assume little depreciation.

33 Mulligan (1995) provides empirical estimates of hours spent on employer financed training that are similar to the calibration target.
that it equals 17 percent of output under the baseline-fitted U.S. tax policy, as observed in the U.S. data.34 Therefore, Υ_2 is determined as the value that equates government spending to 17 percent of GDP.

When searching for the optimal tax policy, I restrict my attention to revenue neutral changes that imply that government consumption is equal under the baseline-fitted U.S. tax policy and the optimal tax policy. In addition when searching for the optimal tax policy I allow the tax policy on capital and labor to be different.

In addition to government consumption, the government also runs a balanced-budget social security program. Social security benefits are set so that the replacement rate, b, is 50 percent.35 The payroll tax, τ_{ss}, is determined so that the social security system is balanced each period.

5 Computational Experiment

The computational experiment is designed to determine the tax policy that maximizes a given social welfare function. I choose a social welfare function (SWF) that corresponds to a Rawlsian veil of ignorance (Rawls (1971)). When searching for the optimal tax policy I search over both flat and progressive tax policies. However, I determine that in the benchmark model the optimal tax policy are a flat taxes on both capital and labor. For notational convenience I present the computational experiment as choosing the optimal flat tax rates on capital and on labor. Since living agents face no earnings uncertainty, the social welfare is equivalent to maximizing the expected lifetime utility of a newborn,

$$SWF(\tau_h, \tau_k) = u(c_j, h_j) + \sum_{s=1}^{J-j-1} \beta^s \prod_{q=1}^{s}(\Psi_q)u(c_{s+1}, h_{s+1}),$$ \hspace{1cm} (51)

where τ_h is the flat tax rate on labor income and τ_k is the flat tax rate on capital income.

To determine the effects of endogenous human capital accumulation, I compare the tax policies that maximize the SWF in the three models. When I determine the optimal tax policy, I test different values of τ_h and determine values for τ_k so that the changes in the tax policy are revenue neutral. Therefore, the experiment is to find τ_h that satisfies

$$\max_{\tau_h} SWF(\tau_h)$$ \hspace{1cm} (52)

34To determine the appropriate value for calibration, I focus on government expenditures less defense consumption.

35The replacement rate matches the rate in CKK and Conesa and Krueger (2006). The Social Security Administration estimates that the replacement ratio for the median individual is 40 percent (see table VI.F10 in the 2006 Social Security Trustees Report; available at www.ssa.gov/OACT/TR/TR06/). This estimate is lower than the replacement rate I use; however, if one also includes the benefits paid by Medicare, then the observed replacement ratio would be higher.
subject to,

\[G = \sum_{j=1}^{J} \mu_j \tau_k (a_j + Tr) + \sum_{j=1}^{J-1} \mu_j \tau_h [ws_j h_j (1 - 0.5 \tau_{ss})]. \]

(53)

6 Results

In this section I quantitatively assess the effects on the optimal capital tax policy of how age-specific human capital is accumulated in my benchmark life cycle model. I determine the optimal tax policies in the exogenous, LBD, and LOD models and then highlight the channels that cause the differences. To fully understand the effects of human capital accumulation, I analyze the aggregate economic variables and life cycle profiles in all three models under the baseline-fitted U.S. tax policy as well as the changes induced by implementing the optimal tax policies.

6.1 Optimal Tax Policies in Exogenous, LBD, and LOD Models

Table 3 describes the optimal tax policies in the three models. The optimal tax policy in the exogenous model is an 18.2 percent flat capital income tax \(\tau_k = 18.2\% \) and a 23.7 percent flat labor income tax \(\tau_h = 23.7\% \). The optimal capital tax is smaller in the exogenous model compared with CKK because my model uses a utility function that is homothetic and separable.

Unlike the analytically tractable model, the optimal capital tax in the computational exogenous model is not zero. The additional aspects of the computational exogenous model that motivate a positive capital tax include: the inability of the government to borrow; agents being liquidity constrained, the government not being able to tax transfers at a separate rate from ordinary capital income, and exogenous retirement coupled with social security. Peterman (2013b) demonstrates that agents being liquidity constrained and the government not being able to tax transfers at a separate rate from ordinary capital income are primarily responsible for the positive capital tax. Since agents’ labor income is lower when they are young they would prefer to borrow against income from future years in order to smooth their consumption. However agents are disallowed from borrowing. Therefore, the government can help alleviate these binding liquidity constraints by shifting some of the lifetime tax burden from earlier to later years. One way to achieve this shift is to utilize a capital tax since young liquidity constrained agents do not hold capital. Moreover, since accidental

36 I checked whether a progressive tax on either capital or labor was optimal. However, I found that the optimal tax policies were always flat taxes in the benchmark model. This result is similar to CKK who find that the optimal tax policies are flat in their model without within cohort heterogeneity. CKK find that a progressive labor income tax is optimal only if the model includes within-cohort heterogeneity. Since all the agents within a cohort are homogenous in my benchmark models, one would expect flat taxes to be optimal. This is in contrast to Gervais (2010) who finds that the government prefers to use both a tax on capital and a progressive tax on labor income to mimic an age-dependent tax.

bequests are inelastic income, the government would prefer to tax them at a higher rate than ordinary capital income. However, since it is assumed that the government cannot distinguish the income from accidental bequests or ordinary capital the optimal capital tax is larger than it would be on just ordinary capital.

I include some of these features that motivate a positive capital tax so that incentives in the model correspond to the incentives in the U.S. economy. For example, the reduced form social security program is necessary so that the level of individual savings are realistic. Aligning the savings incentives are important since the capital to output ratio is a target used to calibrate the discount rate. Additionally, liquidity constraints are included in the model to capture that a sizeable portion of the population face borrowing constraints (see Jappelli (1990)). Other of these features are included to close the model in a tractable manner. See Peterman (2013b) for a thorough discussion of the relative strengths of each of these motives in a model similar to the exogenous model. This paper does not examine these motives, instead it treats the optimal tax policy in the exogenous model as the benchmark for comparison with the optimal tax policies in the other two endogenous models.

Table 3: Optimal Tax Policies in Benchmark Models

<table>
<thead>
<tr>
<th>Tax Rate</th>
<th>Exog</th>
<th>LBD</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_k</td>
<td>18.2%</td>
<td>25.5%</td>
<td>18.9%</td>
</tr>
<tr>
<td>τ_h</td>
<td>23.7%</td>
<td>22.1%</td>
<td>23.6%</td>
</tr>
<tr>
<td>τ_c</td>
<td>0.77</td>
<td>1.16</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Including human capital accumulation through LBD, I find that the optimal tax policy in the LBD model is $\tau_k = 25.5\%$ and $\tau_h = 22.1\%$. The optimal capital tax is 7.3 percentage points larger (forty percent) in the LBD model compared to the exogenous model. The alteration in the Frisch labor supply elasticity profile is the principal reason that the optimal capital tax increases in the LBD model. The left panel of figure 1 plots the lifetime Frisch labor supply elasticities in the LBD model and the exogenous model. The lifetime labor supply elasticity is flat in the exogenous model and upward sloping in the LBD model. Adding LBD causes agents to supply labor relatively more elastically as they age because the human capital benefit decreases. The optimal capital tax is higher in the LBD model in order to implicitly tax agents when they are younger, and supply labor less elastically, at a higher rate.

To quantify the effect of the elasticity channel on the optimal tax policy in the LBD model, I alter the exogenous model so that the shape of the lifetime Frisch labor supply elasticity profile is the same as it is in

37The profiles are determined under the optimal tax policies.
the LBD model under the optimal tax policy. In order to match the shapes of the profiles, I vary σ_2 in the
exogenous model by age. I find that the optimal tax policy in this altered exogenous model, $\tau_k = 25.6\%$ and
$\tau_h = 22.1\%$, is almost identical to the optimal tax policy in the LBD model. The optimal tax policy in the
altered exogenous model demonstrates that the elasticity channel is primarily responsible for the change in
the optimal capital tax in the LBD model.\(^3^8\)

The optimal tax policy in the LOD model is $\tau_k = 18.9\%$ and $\tau_h = 23.6\%$. The optimal capital tax in the
LOD model is 0.7 percentage point larger (approximately five percent) compared to the exogenous model
and 6.7 percentage points smaller (approximately 25 percent) compared to the LBD model. In section 2.3.1
I show that both the elasticity channel and the savings channel affect the optimal capital tax in the LOD
model. The right panel of figure 1 plots the Frisch elasticity profile in the exogenous and LOD models.
Compared to the exogenous model, adding LOD to the model causes agents to supply labor relatively more
elastically when they are young versus when they are old. The elasticity channel causes a decrease in the
optimal capital tax so that agents are implicitly taxed at a lower rate when they are young. Additionally,
the inclusion of LOD allows individuals to use training to save, which activates the savings channel. To
quantify the direction of the saving channel’s effect and importance of both channels, I solve for the optimal
tax policy in an alternative version of the LOD model that excludes the effect from the elasticity channel. I
utilize an alternative utility function,

\[
\frac{c^{1-\sigma_1}}{1-\sigma_1} - \chi_1 \left(\frac{(h)^{1+\frac{1}{\sigma_2}}}{1+\frac{1}{\sigma_2}} \right) - \chi_2 \left(\frac{(n)^{1+\frac{1}{\sigma_2}}}{1+\frac{1}{\sigma_2}} \right),
\]

which is separable in training and hours worked. Since the utility function is separable, the Frisch labor
supply elasticity is no longer a function of the time spent training. The Frisch elasticity with this utility
function is constant, at the value σ_2, so the elasticity channel is eliminated.\(^3^9\) The optimal tax policy in
this model with the alternative utility function is $\tau_k = 19.9\%$ and $\tau_h = 23.3\%$. These results indicate that
in this model, the savings channel results in the optimal capital tax increasing 1.7 percentage points, which
encourages agents to save via human capital as opposed to physical capital. I find that the elasticity channel
drives the optimal capital tax to decrease 1 percentage point canceling just over half of the savings channel’s
effect.

\(^3^8\)The Frisch elasticity profile in the LBD model rises rapidly in the last few period before retirement due to the function form of
the human capital accumulation equation. I confirm that the optimal tax policy in an altered exogenous model without the increase
in the Frisch elasticity over the last few periods still matches the optimal tax policy in the LBD model. Therefore, it is the upward
slope of the profile over the whole life and not just the last few periods that is responsible for driving the results.

\(^3^9\)This alternative utility function also eliminates part of the impact of the savings channel so these results are a lower bound on
the impact of both the savings and elasticity channel. See the section 2.3.1 for more details.
Figure 1: Life Cycle Frisch Labor Supply Elasticity in Endogenous Model

For agents between the ages of twenty to sixty two, adding LOD has an opposite, but similarly sized, effect on the Frisch elasticity profile as adding LBD. However, the elasticity channel has a much smaller effect on the optimal tax policy in the LOD model. The reason that the downward sloping elasticity profile in the LOD model has a smaller impact on the optimal tax policy is that it causes young agents to be more liquidity constrained. Figure 2 plots the labor supply profile for a young agent. The solid line is in the exogenous model under the optimal tax policy. The dashed line is the labor supply profile, under the same tax policy, but in an alternative exogenous model calibrated such that the labor supply elasticity profile matches the LOD model.\(^40\) In both models, young agents tend to work less compared to middle aged agents since their lower human capital implies their total wage is lower. In the altered model, the labor supply elasticity is higher for younger agents compared to the labor supply elasticity in the unaltered exogenous model. Therefore, in the altered model agents tend to work relatively less hours when they are young compared to the unaltered model. Because they supply less labor, these agents are more liquidity constrained when they are young in the altered model. The optimal tax policy includes a larger capital tax in order to alleviate these binding liquidity constraints by shifting some of the tax burden to later in an agent’s life, when he is no longer liquidity constrained.\(^41\) This increase in the optimal capital tax from the exacerbated liquidity constraints offsets some of the decrease in the optimal capital tax from the downward sloping elasticity profile, limiting the overall impact of the elasticity channel.\(^42\)

\(^40\)For the most relevant comparison, I choose to match the labor supply elasticity profile in the LOD model under the optimal tax policy.

\(^41\)Furthermore, the motive to shift the tax burden away from these earlier years when agents are liquidity constrained is enhanced because in the LOD model these younger liquidity constrained agents provide labor more elastically which enhances the distortions from binding liquidity constraints.

\(^42\)For a detailed discussion of magnitude of the relationship between liquidity constraints and the optimal capital tax see Peterman (2013b) and CKK.
6.2 Comparison of Model to Data

In this section, I examine how well the exogenous model fits compared to the observed data. Figure 3 plots the life cycle profiles from the exogenous model under the baseline-fitted U.S. tax policy and in the actual data. Overall, the model does a decent job matching the data; the general shapes of the profiles are similar. However, there are some discrepancies between the profiles predicted by the model and the life cycle profiles from the data.

The upper left panel compares the average percent of the time endowment that is spent working over the lifetime and the upper right compares the labor income. The actual profiles are constructed from the 1967 - 1999 waves of the Panel Survey of Income Dynamics (PSID). I focus my attention on the earnings for the head of the household between ages 20 and 80.

Starting by focusing on the labor supply profiles, the model generated profiles have a similar hump shape as the profiles from the data. Additionally, both profiles decline rapidly after the age of sixty. Despite the general shapes being similar, there are two main differences. First, in the data, households work 30 percent of their total labor endowment at age 20, which grows rapidly over the next few years until it peaks at around 35 percent of the time endowment. For these young households, the model over predicts the amount of time they will spend working compared to the data. In the model, agents work 35 percent of the total labor endowment at age 20. Although the model continues to over predict labor supply, the increase in labor supply

43Earnings, consumption, and savings from the model are converted to real 2012 dollars by equating the average earnings in the model and the data.

44I found that the data for individuals older than 80 were extremely volatile.
over the next few subsequent years is more gradual than in the data. This difference in the labor supply of young households is primarily due to liquidity constraints. In the model agents cannot borrow against future earnings. Therefore, the positive wealth effect that labor supply has on a household’s consumption more than offsets the disincentive to work associated with wages being relatively low at the beginning of the life cycle.\footnote{For further discussion, and a description of why idiosyncratic risk exacerbates these effects see Heathcote et al. (2010)} In contrast, in the data, young households may have a means to borrow, decreasing the relative wealth effect for young households from working. The second major difference between the profiles is that the model generated profile starts to slope downwards around the age of forty while the profile from the data does not start to slope downwards until households are in their fifties. However, I find in section 6.1 that a more rapidly declining labor supply profile does not materially affect the optimal tax policy.\footnote{The lack of relationship between the labor supply profile and optimal tax policy is not surprising. Peterman (2013b), Garriga (2001), Erosa and Gervais (2002) all demonstrate that when using a utility function that is homothetic and separable in labor and consumption, such as the one in the benchmark model, that regardless of the labor supply profile the government does not want to condition taxes on age. However, if the utility function is not homothetic and separable then the government wants to condition labor income taxes on age and in the absence of the ability to use age-dependent taxes a downward sloping labor supply will lead to a positive optimal tax on capital.}

Focusing on the upper left panel, the earnings profile in the data is similar to the one generated by the model. Both profiles are humped shaped with a peak around forty years old. However, since in the model agents are forced to retire at 65, but in the U.S. economy some households retire after the age of 65, the earnings profile for these older households tends to be higher in the data.

The lower left panel compares the consumption profile in the model to the per-capita expenditures on food in the PSID. I find that both profiles are hump-shaped; however, consumption on food tends to peak earlier in the data than total consumption in the model. Additionally, comparing the growth in consumption from the age 20 to the peak, the model exhibits more growth in consumption over the lifetime. One possible reason for these differences is that the PSID data are limited to just expenditures on food while the model generated consumption represents all consumption.

Finally, the lower right panel examines savings in the model and median total wealth in the 2007 Survey of Consumer Finances (SCF) for individuals between the ages of 20 and 80.\footnote{In order to prevent the upper tail of the wealth distribution from skewing the statistic for comparison, I choose to focus on the median level of wealth as opposed to the average.} I smooth through some of the volatility in the wealth data by using five year age bins. Even after smoothing, the data for individuals after age 80 was not included because there were few observations in the sample leading the estimates to be extremely volatile. I find that the profiles are similar in the model and the data. Both are hump-shaped, peaking around $300,000 at the age of 60. One discrepancy between the two profiles is that the model predicts that agents will deplete their savings more quickly than they do in the data. This discrepancy could arise because the model does not include any motive for individuals leaving a bequest for younger
Note: These plots are life cycle profiles of the exogenous model models under the baseline-fitted U.S. tax policy and the actual profiles in the data. The units of the consumption, earnings, and capital profiles are converted to real dollars by matching the average earnings in the model and in the data.

6.3 The Effects of Adding Endogenous Age-Specific Human Capital

This section analyzes the effect on the aggregate economic variables and life cycle profiles of changing from exogenous human capital accumulation to either LBD or LOD under the baseline-fitted U.S. tax policy. Figure 4 plots the life cycle profiles of hours, consumption, assets, and age-specific human capital in all three models. Table 4 describes the optimal tax policies and summarizes the aggregate economic variables under both the baseline-fitted U.S. tax policy and optimal tax policies. The first, fourth, and seventh columns are the aggregate economic variables under the baseline-fitted U.S. tax policy in the exogenous, LBD, and LOD models, respectively. The second, fifth, and eighth columns are the aggregate economic variables under the optimal tax policies. The third, sixth, and ninth columns are the percentage changes in the aggregate economic variables induced from adopting the optimal tax policies.

Starting by comparing the exogenous and LBD models, the first and fourth columns of table 4 demonstrate that the levels of aggregate hours, labor supply, and aggregate capital are similar in the two models.
Table 4: Aggregate Economic Variables

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Exogenous</th>
<th></th>
<th>LBD</th>
<th></th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Optimal</td>
<td>% Change from Baseline to Optimal</td>
<td>Baseline</td>
<td>Optimal</td>
</tr>
<tr>
<td>Y</td>
<td>0.81</td>
<td>0.82</td>
<td>1.8%</td>
<td>0.80</td>
<td>0.81</td>
</tr>
<tr>
<td>K</td>
<td>2.17</td>
<td>2.25</td>
<td>3.6%</td>
<td>2.17</td>
<td>2.17</td>
</tr>
<tr>
<td>N</td>
<td>0.46</td>
<td>0.46</td>
<td>0.8%</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>Avg Hours</td>
<td>0.33</td>
<td>0.34</td>
<td>0.7%</td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>w</td>
<td>1.12</td>
<td>1.13</td>
<td>1.0%</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td>r</td>
<td>0.05</td>
<td>0.05</td>
<td>-4.6%</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>tr</td>
<td>0.03</td>
<td>0.03</td>
<td>4.2%</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Value</td>
<td>-139.26</td>
<td>-138.46</td>
<td>0.6%</td>
<td>-159.01</td>
<td>-158.10</td>
</tr>
<tr>
<td>CEV</td>
<td>0.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The average hours refers to the average percent of time endowment worked in the productive labor sector. Both the marginal and average tax rates vary with income under the baseline-fitted U.S. tax policy. The marginal tax rates are the population weighted average marginal tax rates for each agent.

The calibrated parameters are determined so that under the baseline-fitted U.S. tax policy the models match certain targets from the data. Since many of the aggregate economic variables are targets and these calibration parameters are determined separately in the exogenous and LBD models, the aggregates are similar in the two models.

Although adding LBD does not have a large effect on the aggregate economic variables, it does cause changes in the life cycle profiles. Adding LBD causes agents to work relatively more at the beginning of their working life when the human capital benefit is larger, and less later when the benefit is smaller (see the solid black and dashed red lines in the upper-left panel of figure 4).

The upper-right panel shows that the lifetime consumption profile is steeper in the exogenous model compared to the LBD model. The intertemporal Euler equation controls the slope of consumption profile over an agent’s lifetime. The relationship is

$$\left(\frac{c_{j+1}}{c_j}\right)^{\gamma_j} = \Psi_j \tilde{p}_{\gamma j},$$

(55)

One drawback to these OLG models that do not include frictions in the labor market is that, contrary to the data, the labor supply profile is downward sloping over a majority of the lifetime. However, this highlights why it is an advantage of the homothetic and separable utility function that the Frisch elasticity is not related to hours worked.
Figure 4: **Life Cycle Profiles under Baseline-Fitted U.S. Tax Policy**

- **Hours Under Baseline**
 - Exogenous
 - LBD
 - LOD (working + training)
 - LOD (working)

- **Consumption Under Baseline**
 - Exogenous
 - LBD
 - LOD

- **Asset Holdings Under Baseline**
 - Exogenous
 - LBD
 - LOD

- **Age-specific Human Capital Under Baseline**
 - Exogenous
 - LBD
 - LOD

Note: These plots are life cycle profiles of the three calibrated models under the baseline-fitted U.S. tax policy. There are two labor lines for the LOD model, one solely for hours worked and the other for hours worked plus hours spent training.
where \tilde{r}_t is the marginal after-tax return on capital. In order to induce the same capital to output ratio in the LBD model, β is lower which leads to the flatter consumption profile. The consumption profiles generally fall dramatically towards the end of the lifetime due to the low probability of survival. The lower value of β in the LBD model decreases the value an agent places on their consumption in future periods so agents’ savings are also relatively smaller for the second half of their lifetime (see the lower-left panel). The lifetime age-specific human capital profiles are similar in the two models since the sequence of parameters $\{\Omega_j\}_{j=1}^{r_j-1}$ is calibrated so that age-specific human capital matches (see the lower-right panel of figure 4).

Next, comparing the exogenous and LOD models, although the parameters values are calibrated such that the targets match, the size of the economy is smaller in the LOD model because agents must spend part of their time endowment training. Comparing the first and seventh columns of table 4, aggregate labor supply, and physical capital are smaller in the LOD model compared with the exogenous model, however, the relative ratios of the aggregates are similar.

Adding LOD also affects the life cycle profiles. Figure 4 plots two labor supply profiles for the LOD model — the first is solely hours spent working, and the second is the sum of hours spent working and training (see the blue lines in the upper-left panel). The LOD labor supply profile that includes training is similar to the labor supply profile in the exogenous model; however the profile that excludes training is smaller. The difference between the two LOD profiles is the amount of time spent training. This gap shrinks as an agent ages, representing a decrease in the amount of time spent training. Agents spend less time training as they age because the benefits decrease since they have fewer periods to take advantage of their human capital. Adding LOD causes the size of the economy to decrease causing a shift down in the life cycle profile for consumption. In the LOD model, agents can use their time endowment to accumulate human capital, which acts as an alternative form of savings from assets. Therefore, during their working lives, agents hold less ordinary capital and opt to use human capital to supplement their savings. As an agent approaches retirement the value of the human capital decreases and the ordinary savings profile in the LOD model converges to the profile in the exogenous model. Finally, similar to LBD, the lifetime age-specific human capital profiles are similar in the exogenous and LOD models since the profiles are a calibration target.

6.4 The Effects of the Optimal Tax Policy in the Exogenous Model

This section examines the effects on the economy of adopting the optimal tax policy in the exogenous model. In the exogenous model, the optimal capital tax is smaller than the average marginal tax under the baseline-fitted U.S. tax policy so adopting the optimal tax policy causes an increase in aggregate capital (see columns
one and two of table 4). The average marginal labor tax is also less under the optimal tax policy than the baseline so the labor supply increases.\(^{49}\) The increase in labor supply is relatively smaller than the increase in capital so the rental rate on capital decreases and the wage rate increases.

Figure 5 plots the life cycle profiles for time worked, consumption, and assets in the exogenous model under the baseline-fitted U.S. tax policies and the optimal tax policies. The solid lines are the profiles under the baseline-fitted U.S. tax policies, and the dashed lines are the profiles under the optimal tax policies. Although the changes in the profiles from adopting the optimal tax policies are small, I still interpret them in order to provide the reader with a better understanding of the dynamics in the model. Adopting the optimal tax policy in the exogenous model causes changes in all three life cycle profiles: (i) early in their life, agents work relatively more; (ii) agents save more, especially during periods when they are wealthier; and (iii) the lifetime consumption profile steepens. The first change, agents working more early in their life, is a result of the lower implicit tax on young labor income due to a decrease in the tax rate on capital income.

\(^{49}\)A revenue neutral tax change can include a decrease in both the average marginal tax rate on labor and capital since the baseline is progressive and the optimal is flat. Additionally, agents generally work longer under the optimal tax policy so the tax base is larger.
Implementing the optimal tax policy causes a decrease in both the capital tax and the rental rate on capital leading to shifts in both the capital and savings profiles. These changes have competing effects on the marginal after-tax return on capital. Furthermore, the change in the tax rate has an uneven effect on agent’s net return over his lifetime since the baseline-fitted US tax on capital is progressive and the optimal tax is flat. The decrease in the tax rates is larger for agents who hold more savings since their marginal tax rate was relatively higher under the progressive baseline-fitted US tax policy. Overall, the change in the tax rate dominates for middle-aged agents and the after tax return increases. The converse is true for younger agents who experience a decrease in the after tax return when the optimal tax policy is adopted. In response to these changes middle-aged individuals increase their savings under the optimal tax policy, while younger and older agents decrease their savings (see the lower left panel of figure 5). In addition, since the after tax return to capital controls the slope of the consumption profile, adopting the optimal tax policy causes a steeper consumption profile for middle-aged agents (figure 5, upper-right panel).

6.5 The Effects of Optimal Tax Policy in the LBD Model

Adopting the optimal tax policy in the LBD model causes an increase in the capital tax and a decrease in the labor tax (see column four, five, and six of table 4). Since adopting the optimal tax policies causes
the capital tax to change in different directions in the exogenous and LBD models, the aggregate economic variables react differently. The changes in the tax policy cause a small increase in the capital stock and a large increase in aggregate labor supply in the LBD model. The relatively larger rise in labor translates into an decrease in the wage rate and a increase in the rental rate on capital.

Implementing the optimal tax policies in the LBD model causes the life cycle profiles to change somewhat differently than in the exogenous model (see figures 6). Agents shift time worked from earlier to later years in response to the larger capital tax, which implicitly taxes labor income from early years at a higher rate (upper-right panel of figure 6). Because agents work more in their middle years, age-specific human capital is also higher for middle aged agents (see the lower-right panel). Applying the optimal tax policy introduces two opposing effects on the agent’s lifetime asset profile. First, agents increase their savings under the optimal tax policy because the economy is larger. Second, the larger capital tax under the optimal tax policy decreases the average marginal after-tax return on capital, causing agents to hold fewer assets. The first effect is constant for all agents. The second effect is not constant for all agents, but it is negatively proportional to an agent’s capital income because the baseline-fitted U.S. tax policy is progressive and the optimal tax policy is flat. This second effect dominates for younger and older agents and they tend to save less under the optimal tax policy. Conversely, the first effect dominates for middle-aged agents and they tend to save more. I find that the first effect has the dominate impact on consumption leading the consumption profile to uniformly shift upwards (see the upper-right panel).

6.6 The Effects of Optimal Tax Policy in the LOD Model

Although the optimal capital tax is larger in the LOD model than in the exogenous model, the direction of the changes in the tax rates from adopting the optimal tax policy are similar in the two models: a decrease in the average marginal tax on capital and labor. Therefore, the aggregate economic variables respond to adopting the optimal tax policy in a similar fashion in both models: capital increases, labor increases, wages increase, and the rental rate decreases. Adopting the optimal tax policy in the LOD also induces changes in the life cycle profiles much like those in the exogenous model (see figures 5 and 7): (i) agents work more earlier in their life, (ii) agents increase their savings during the middle of their lifetime, and (iii) agents increase their consumption at a faster rate throughout their life. One additional feature of the LOD model is that agents choose how much to train. I find that adopting the optimal tax policy has minimal effects on the training profile (see the lower-left panel of figure 7).

50 Although adopting the optimal tax policy does not cause a uniform change in the after-tax return to capital in the LBD model, liquidity constraints cancel out their effect on the slope of the consumption profile.
Figure 7: Life Cycle Profiles in the LOD Model

Note: The upper-left panel is a plot of labor and the sum of labor and training.
7 Sensitivity Analysis

This section examines the sensitivity of two different aspects of the model. First, I demonstrate that the general shape of the labor supply profile does not affect the optimal tax policy in the exogenous model. Second, I determine that using a different utility function does not weaken the relationship between how human capital is accumulated and the optimal capital tax.

7.1 The Effect of Shape of Labor Supply Profile on Optimal Tax Policy

In this section, I test the relationship between the shape of the labor supply profile and the optimal tax. I examine this relationship because there are two differences between the profile in the data, the exogenous model, and the LBD model. First, comparing the labor supply profile in the actual data and the exogenous model (figure 3), the exogenous model predicts that the labor supply profile will be downward sloping over a majority of the lifetime while the actual profile from the data tends to be much flatter. Second, comparing the labor supply profile predicted by the exogenous and LBD models (figure 4), the labor supply profile in the LBD model declines much more rapidly over the second half of the working lifetime than it does in the exogenous model. In order to test whether the shape of the labor supply profile affects the optimal tax policy, I find the optimal tax policies in two alternative exogenous model in which I vary the values of χ over the lifetime such that the labor supply profile matches an alternative labor supply profile.

First, I determine whether the flatter labor supply profile in the actual data has an affect on the optimal tax policy. Figure 8 plots the labor supply profile generated in the exogenous benchmark model (solid black line) and the average hours worked in the data (dashed black line). Additionally, the solid red line plots the labor supply generated in an alternative exogenous model which is calibrated to more closely match the actual labor supply profile. I find that the optimal tax policy in this alternative exogenous model, $\tau_h = 23.8\%$ $\tau_k = 17.9\%$, is almost identical to the optimal tax policy in the benchmark exogenous model ($\tau_h = 23.7\%$ and $\tau_k = 18.2\%$). This result indicates that the steeper labor supply profile predicted by the model has only a negligible affect on the optimal tax policy.

Next, I examine whether the more rapid decline in the labor supply profile over the end of the working lifetime in the LBD model affects the optimal tax policy. In this experiment, I calibrate an alternative exogenous model such that the labor supply profile more closely matches the profile in the LBD model. Figure 9 plots the labor supply profiles in the benchmark exogenous model (solid black), the LBD model (dashed black), and the new alternative exogenous model (solid red). Comparing the dashed black line

51 The labor supply profiles are all under the baseline-fitted U.S. tax policy.
and the red line, the labor supply profile over the second half of the working lifetime in the alternative exogenous model matches the rapid decline predicted in the LBD model. I find that the optimal tax policy in this alternative exogenous model is $\tau_h = 23.6\%$ and $\tau_k = 18.9\%$, again, almost identical to the optimal tax policy in the benchmark exogenous model.

These results indicate that the optimal tax policy in my benchmark exogenous model is not related to the general shape of the labor supply profile. These results are not surprising since one feature of the benchmark utility function is that it is homothetic and separable in labor and consumption. Therefore, labor supply is not related to the Frisch labor supply elasticity. This utility function eliminates the most active channel by which the labor supply profile affects the optimal tax policy. Some previous works, such as Peterman (2013b) and CKK, use a utility function in which labor supply affects the Frisch labor supply elasticity. The next section examines whether the relationship between endogenous human capital accumulation and optimal taxation changes when this type of utility function is used.

7.2 Utility Function

In this section I determine the effect of how human capital is accumulated on the optimal capital tax in a model with an alternative utility function, $U(c_{1,t}, 1 - h_{1,t}) = \frac{c_{1,t}^{\gamma} (1 - h_{1,t})^{1-\gamma}}{1-\gamma}$. This utility function is the benchmark specification in CKK. I refer to this utility function as the nonseparable utility function. This

52One exception to this result is described in section 6.1, where I demonstrate that a lower labor supply in the first few years of working leads agents to have binding liquidity constraints for more years and can alter the optimal tax policy.
function includes an additional motives for a positive capital tax. Atkeson et al. (1999), Erosa and Gervais (2002), Garriga (2001), and CKK demonstrate that a utility function that is neither homothetic or separable in consumption and labor creates a motive for a positive capital tax. Under such a utility specification, the labor supply elasticity is a negative function of hours worked. An agent’s labor supply elasticity profile tends to slope upwards in simulations using this utility function since the labor supply profile generally slopes downward over a majority of the lifetime. The optimal capital tax is therefore larger to implicitly tax younger labor income that is supplied less elastically at a higher rate. I begin by presenting the new calibration parameters followed by the optimal tax policies in all three models.

7.2.1 Changes in Calibration

The nonseparable utility function requires calibrating two new parameters. The new parameters are γ, which determines the comparative importance of consumption and leisure, and ζ, which controls risk aversion. It is no longer possible to separately target the Frisch elasticity and average time worked since γ controls both of these values. Therefore, I calibrate γ to target the percentage of the time endowment worked and no longer use the Frisch elasticity as a target.

Table 5 lists the calibration parameters for the nonseparable utility parameters. The Frisch elasticity in the exogenous model for this utility function is $\frac{(1-h)}{h} \frac{1-\gamma(\zeta-1)}{\zeta}$. The average Frisch elasticity implied by the calibration in the exogenous model is 1.13, which is more than twice as large as with the benchmark utility specification in the exogenous model. However, section 4.2 expresses reasons why a larger Frisch elasticity
may be in line with unbiased empirical estimates.

Table 5: Preference Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Exog</th>
<th>LBD</th>
<th>LOD</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>1.012</td>
<td>1.009</td>
<td>1.013</td>
<td>$K/Y = 2.7$</td>
</tr>
<tr>
<td>$\Psi_j \beta$</td>
<td>0.998</td>
<td>0.996</td>
<td>1.000</td>
<td>$K/Y = 2.7$</td>
</tr>
<tr>
<td>γ</td>
<td>0.35</td>
<td>0.27</td>
<td>0.34</td>
<td>Avg. $h_j + n_j = \frac{1}{3}$</td>
</tr>
<tr>
<td>ζ</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>CKK</td>
</tr>
</tbody>
</table>

Adding LBD and LOD changes workers’ incentives, workers’ choice variables, and the appropriate values of the preference parameters. The main difference is that in the LBD model agents enjoy the human capital benefit. Because working is more valuable in the LBD model, the value for γ is smaller to generate the same level of aggregate hours. A lower γ decreases the relative importance of consumption compared to leisure, which implies a lower Frisch elasticity in the LBD model than in the exogenous model. The rest of the parameters are similar in the exogenous and LBD models.

Adding LOD provides agents with an alternative method of saving. Since agents use human capital as part of their savings, β must be higher to calibrate the model to match the same capital to output ratio. A higher value for β implies agents are more patient, placing a higher value on future consumption. A higher value for β also implies that agents will spend more time training. Since γ is set to target the sum of time spent in non-leisure activities, the value for γ must drop to keep agents spending one-third of their total time endowment either working or training.

7.2.2 Optimal Tax Policies in Nonseparable Models

There is a larger motive for a positive capital tax in all the models with nonseparable preferences for two reasons. First, the nonseparable utility implies that the Frisch elasticity profile is negatively related to the labor supply profile. Since the labor supply profile is downward sloping over a majority of the life, the Frisch elasticity profile is upward sloping in all the models. The upward sloping Frisch elasticity profile motivates a large positive capital tax.\(^{53}\) Second, there are less degrees of freedom when calibrating the model so the Frisch elasticity is larger in the nonseparable model. Therefore, the government would prefer to rely on a capital tax, as opposed to a labor income tax.

Table 6 lists the optimal tax policies for the nonseparable models. Even with the nonseparable utility — in which all the models contain a large motive for a capital tax — there is still a large range of optimal

\(^{53}\)I find that adding LBD causes the Frisch elasticity to be even steeper and further enhances this motive for a positive tax on capital. In contrast, I find that the Frisch elasticity is still upward sloping when I add LOD, however it is less steep.
capital tax rates. Compared to the exogenous model, adding LBD causes the optimal capital tax to increase by 14.5 percentage points (approximately 45 percent). Moreover, adding LOD causes a 4.7 percentage point (approximately a 15 percent) increase in the optimal capital tax compared to the exogenous model and a 9.8 percentage point decrease compared to the LBD model (approximately 30 percent). The range of the optimal capital taxes is even larger in this model indicating that the importance of how human capital is accumulated on optimal capital taxation is robust to this change in the utility specification.

Table 6: Optimal Tax Policies in Nonseparable Models

<table>
<thead>
<tr>
<th>Tax Rate</th>
<th>Exog</th>
<th>LBD</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_k)</td>
<td>31.8%</td>
<td>46.3%</td>
<td>36.5%</td>
</tr>
<tr>
<td>(\tau_h)</td>
<td>20.2%</td>
<td>15.0%</td>
<td>18.7%</td>
</tr>
<tr>
<td>(\frac{\tau_k}{\tau_h})</td>
<td>1.57</td>
<td>3.09</td>
<td>1.95</td>
</tr>
</tbody>
</table>

8 Conclusion

In this paper I characterize the optimal capital and labor tax rates in three separate life cycle models in which age-specific human capital is accumulated exogenously, endogenously through LBD, and endogenously through LOD. Analytically, I demonstrate that compared to the exogenous model, including either form of endogenous human capital accumulation creates a motive for the government to condition labor income taxes on age and in their absence, it will use a non-zero capital tax to mimic these age-dependent taxes. Quantitatively, I find that the optimal capital tax varies by up to 7.3 percentage points. Moreover, I find that even though including either form of endogenous human capital accumulation causes an increase in the optimal capital tax, the optimal tax rate is still 6.3 percentage points (approximately 35 percent) larger with LBD compared to LOD. These findings demonstrate that the form by which human capital is assumed to accumulate has large impacts on the optimal capital tax.

LBD increases the motive for a capital tax since it alters the lifetime labor supply elasticity profile. Adding LBD to the model causes younger agents to supply labor relatively less elastically since the human capital benefit decreases over an agent’s lifetime. A larger capital tax is optimal because it implicitly taxes younger labor supply income, which is supplied less elastically, at a higher rate. Adding LOD to the model has two counteracting affects on the optimal tax policy. Including LOD causes younger agents to supply labor relatively more elastically because training is an imperfect substitute for working. This change in the elasticity motivates the government to decrease the capital tax and raise the labor tax. However, a tax on
labor in the LOD model decreases the incentive for agents to save with human capital as opposed to physical capital. Therefore, the government has an incentive to increase the tax on capital in order to promote more training. Overall, I find that this second effect dominates and adding LOD causes the optimal capital tax to increase in numerical simulations.

In a standard life cycle model, I find a large bound on the estimates of the optimal capital tax depending on the model’s assumptions with regard to how human capital is accumulated and the shape of the lifetime Frisch labor supply elasticity profile implied by the utility specification. For economists to reach more precise conclusions from life cycle models, they must determine by what process do agents acquire age-specific human capital once they start working. Determining the shape of the labor supply elasticity profile would help to provide guidance as to which form of human capital accumulation is consistent with the data.
A Analytical Derivations

For Online Publication

A.1 Exogenous

The Lagrangian for this specification is

\[
\mathcal{L} = \frac{c_{1,t}^{1-\sigma_1} h_{1,t}^{1+\frac{1}{\sigma_2}}}{1-\sigma_1} - \chi \frac{h_{1,t}^{1+\frac{1}{\sigma_2}}}{1+\frac{1}{\sigma_2}} + \beta \frac{c_{2,t+1}^{1-\sigma_1} h_{2,t+1}^{1+\frac{1}{\sigma_2}}}{1-\sigma_1} - \chi \frac{h_{2,t+1}^{1+\frac{1}{\sigma_2}}}{1+\frac{1}{\sigma_2}}
\]

(56)

where \(\rho \) is the Lagrange multiplier on the resource constraint and \(\lambda \) is the Lagrange multiplier on the implementability constraint. The first order conditions with respect to labor, capital and consumption are

\[
\rho_t = \chi h_{1,t}^{\frac{1}{\sigma_2}} (1 + \lambda_t (1 + \frac{1}{\sigma_2}))
\]

(57)

\[
\rho_{t+1} \theta \epsilon_2 = \beta \chi h_{2,t+1}^{\frac{1}{\sigma_2}} (1 + \lambda_t (1 + \frac{1}{\sigma_2}))
\]

(58)

\[
\rho_t = \theta (1 + r) \rho_{t+1}
\]

(59)

\[
\rho_t = c_{1,t}^{1-\sigma_1} + \lambda_t (1 - \sigma_1) c_{1,t}^{1-\sigma_1}
\]

(60)

and

\[
\theta \rho_{t+1} = \beta c_{2,t+1}^{1-\sigma_1} + \beta \lambda_t (1 - \sigma_1) c_{2,t+1}^{1-\sigma_1}
\]

(61)

Combining the first order equations for the governments problem with respect to capital and consumption yields

\[
\left(\frac{c_{2,t+1}}{c_{1,t}} \right)^{\sigma_1} = \frac{\beta \rho_t}{\rho_{t+1} \theta}
\]

(62)

where \(\rho \) is the Lagrange multiplier on the resource constraint and \(\lambda \) is the Lagrange multiplier on the implementability constraint. Taking the ratio of the agent’s first order conditions, equations 5 and 6 under the benchmark utility specification gives

\[
1 - \tau_{h,2} \left(h_{1,t} \right)^{\frac{1}{\sigma_2}} = \frac{1}{\epsilon_2} \left(\frac{c_{1,t}}{c_{2,t+1}} \right)^{-\sigma_1} \left(\frac{h_{2,t+1}}{h_{1,t}} \right)^{\frac{1}{\sigma_2}}.
\]

(63)

Combining equation 62 and 63 yields

\[
1 - \tau_{h,2} = \frac{1}{\epsilon_2} \left(\frac{\beta \rho_t}{\rho_{t+1} \theta} \right) \left(\frac{h_{2,t+1}}{h_{1,t}} \right)^{\frac{1}{\sigma_2}}.
\]

(64)

The ratio of first order equations for the government with respect to young and old hours is

\[
\frac{\rho_t \beta}{\epsilon_2 \rho_{t+1} \theta} \left(\frac{h_{2,t+1}}{h_{1,t}} \right)^{\frac{1}{\sigma_2}} = \frac{1 + \lambda_t (1 + \frac{1}{\sigma_2})}{1 + \lambda_t (1 + \frac{1}{\sigma_2})}.
\]

(65)
Combining equation 65 and 64 generates the following expression for labor taxes

\[
\frac{1 - \tau_{h,2}}{1 - \tau_{h,1}} = \frac{1 + \lambda \sigma (1 + \frac{1}{\sigma^2})}{1 + \lambda \sigma (1 + \frac{1}{\sigma^2})} = 1.
\] (66)

A.2 LBD

The Lagrangian for this LBD specification is

\[
\mathcal{L} = c_{1,t}^{1-\sigma} - \frac{h_{1,t}^{1+\frac{1}{\sigma}}}{1-\sigma} + \beta c_{2,t+1}^{1-\sigma} - \frac{h_{2,t+1}^{1+\frac{1}{\sigma}}}{1-\sigma} - \rho_1 (c_{1,t} + c_{2,t} + K_{t+1} - K_t + G_t - rK_t - w(h_{1,t} + h_{2,t} s_2))
\]

\[
- \rho_{t+1} (c_{1,t+1} + c_{2,t+1} + K_{t+1} + G_{t+1} - rK_{t+1} - w(h_{1,t+1} + h_{2,t+1} s_2))
\]

\[
+ \lambda \sigma c_{1,t}^{1-\sigma} - \chi h_{1,t}^{1+\frac{1}{\sigma}} + \frac{\chi \beta h_{2,t+1} s_{h1}(t+1)}{s_2} - \beta \lambda h_{2,t+1}^{1+\frac{1}{\sigma}}
\]

where \(\rho \) is the Lagrange multiplier on the resource constraint and \(\lambda \) is the Lagrange multiplier on the implementability constraint. The first order conditions with respect to labor, capital and consumption are

\[
\rho_t (1 + h_{2,t+1} s_{h1}(t+1)) = \chi h_{1,t}^{1+\frac{1}{\sigma}} (1 + \lambda \sigma (1 + \frac{1}{\sigma^2})) - \theta \lambda \sigma h_{2,t+1} s_{h1}^2 (t+1)
\]

\[
+ \lambda \sigma h_{1,t}^{1+\frac{1}{\sigma}} \beta h_{1,t} \left[s_{h1}(t+1)^2 - \frac{s_{h2} h_{2,t+1}^2 (t+1)}{s_2} \right]
\] (68)

\[
\rho_{t+1} s_{h2} = \beta \chi h_{2,t+1} \left[1 + \lambda \sigma (1 + \frac{1}{\sigma^2}) + (1 + \frac{1}{\sigma^2}) h_{1,t} s_{h1}(t+1) \lambda \sigma \right]
\] (69)

\[
\rho_t = \theta (1 + r) \rho_{t+1}
\] (70)

\[
\rho_t = c_{1,t}^{1-\sigma} + \lambda \sigma (1 - \sigma) c_{1,t}^{1-\sigma}
\] (71)

and

\[
\theta \rho_{t+1} = \beta \sigma c_{2,t+1}^{1-\sigma} + \beta \lambda \sigma (1 - \sigma) c_{2,t+1}^{1-\sigma}.
\] (72)

The first order conditions with respect to capital and consumption are the same in the exogenous (59, 60, and 61) and LBD models (70, 71, and 72). Therefore equation 14 still holds for this model and therefore the optimal tax on capital is still zero when the government can condition labor income taxes on age.

Combining the first order equations for the governments problem with respect to capital and consumption yields

\[
\left(\frac{c_{2,t+1}}{c_{1,t}} \right)^{\sigma} = \frac{\beta \rho_t}{\rho_{t+1} \theta}
\] (73)

Taking the ratio of the agent’s first order conditions, equations 19 and 20 and combining with equation 73 yields

\[
\frac{1 - \tau_{h,1}}{1 - \tau_{h,2}} = \left(\frac{h_{1,t}}{h_{2,t+1}} \right)^{1+\frac{1}{\sigma}} \left(\frac{\rho_{t+1} s_{h2} (t+1)}{\beta \rho_t} \right) - \frac{h_{2,t+1} s_{h2} (t+1)}{1 + r (1 - \tau_k)}.
\] (74)
Combining equations 74, 68 and 69 the ratio of the optimal taxes on labor is,

\[\frac{1 - \rho_{t,1}}{1 - \rho_{t,2}} = \frac{1 + \lambda_{t,2}(1 + \frac{1}{\sigma_2}) h_{2,2} + \lambda_{t}(1 + \frac{1}{\eta_2}) h_{2,1} + \lambda_{t}(1 + \frac{1}{\eta_2}) h_{2,1} + \lambda_{t}(1 + \frac{1}{\eta_2}) h_{2,1}}{1 + \lambda_{t}(1 + \frac{1}{\eta_2}) h_{2,1} + \lambda_{t}(1 + \frac{1}{\eta_2}) h_{2,1} + \lambda_{t}(1 + \frac{1}{\eta_2}) h_{2,1}} \]

(75)

A.3 LOD

The Lagrangian for the LOD model is

\[\mathcal{L} = \frac{c_{1,t}^{1 - \sigma_1}}{1 - \sigma_1} - \chi \frac{(h_{1,t} + n_{1,t})^{1 + \frac{1}{\sigma_2}}}{1 + \frac{1}{\sigma_2}} + \beta c_{2,t+1}^{1 - \sigma_1} - \chi \frac{h_{2,t+1}^{1 + \frac{1}{\sigma_2}}}{1 + \frac{1}{\sigma_2}} \]

\[- \rho_t(c_{1,t} + c_{2,t} + K_{t+1} - K_t + G_t - rK_t - w(h_{1,t} + h_{2,t} + s_2)) \]

\[- \rho_{t+1} \theta \left(c_{1,t+1} + c_{2,t+2} + K_{t+2} - K_t + G_t + rK_t - w(h_{1,t+1} + h_{2,t+1} + s_2) \right) \]

\[+ \lambda_t(c_{1,t} - \sigma_1 + \beta c_{2,t+1} - \chi h_{1,t}^{1 + \frac{1}{\sigma_2}} - \beta h_{2,t+1}^{1 + \frac{1}{\sigma_2}}) \]

\[+ \eta_t(\chi h_{2,t+1}^{1 + \frac{1}{\sigma_2}} - \chi h_{1,t}^{1 + \frac{1}{\sigma_2}}) \]

where \(\rho \) is the Lagrange multiplier on the resource constraint, \(\lambda \) is the Lagrange multiplier on the implementability constraint and \(\eta \) is the Lagrange multiplier on the constraint equating the first order conditions with respect to training and work. The first order conditions with respect to labor, capital, consumption and training are,

\[\rho_t = \chi \frac{(h_{1,t} + n_{1,t})^{\frac{1}{\eta_2}}}{\sigma_2(h_{1,t} + n_{1,t})} + \frac{\eta_t s_2}{\sigma_2(h_{1,t} + n_{1,t})} \]

(77)

\[\rho_{t+1} \theta s_2 = \beta \chi \frac{h_{2,t+1}^{\frac{1}{\sigma_2}}}{\sigma_2} \left(1 + \frac{1}{\sigma_2} \right) - \eta_t \left(1 + \frac{1}{\sigma_2} \right) s_{n1}(t+1) \]

(78)

\[\rho_t = \theta(1 + r) \rho_{t+1} \]

(79)

\[\rho_t = c_{1,t} + \lambda_t(1 - \sigma_1) c_{1,t}^{-\sigma_1} \]

(80)

\[\theta \rho_{t+1} = \beta c_{2,t+1}^{-\sigma_1} + \beta \lambda_t(1 - \sigma_1) c_{2,t+1}^{-\sigma_1} \]

(81)

and

\[\theta \rho_{t+1} h_{2,t+1} s_{n2}(t+1) = \]

\[\chi \frac{(h_{1,t} + n_{1,t})^{\frac{1}{\eta_2}}}{\sigma_2(h_{1,t} + n_{1,t})} \left(\frac{\lambda_t s_{n2} + \sigma_2(h_{1,t} + n_{1,t})(1 + \eta_t s_{n2}(t+1))}{\sigma_2(h_{1,t} + n_{1,t})} \right) - \beta \chi \eta_t \sigma_2^{1 + \frac{1}{\sigma_2}} \frac{(h_{1,t} + n_{1,t}) s_{n2,n2}(t+1)}{\sigma_2(h_{1,t} + n_{1,t})} \]

(82)

The first order conditions with respect to capital and consumption are the same in the exogenous (59, 60, and 61) and LOD models (79, 80, and 81). Therefore equation 14 still holds for this model and therefore the optimal tax on capital is still zero when the government can condition labor income taxes on age.
Combining the first order equations for the governments problem with respect to capital and consumption yields

\[
\left(\frac{c_{2,t+1}}{c_{1,t}} \right)^{\sigma_1} = \frac{\beta \rho_t}{\rho_{t+1}} \theta
\] \hspace{1cm} (84)

Taking the ratio of the agent’s first order conditions, equations 27 and 28 and combining with equation 84 yields

\[
\frac{1 - \tau_{h,2}}{1 - \tau_{h,1}} = \left(\frac{h_{2,t+1}}{h_{1,t} + n_{1,t}} \right)^{\frac{1}{\sigma_2}} \left(\frac{\beta \rho_t}{\rho_{t+1}} \theta \right).
\] \hspace{1cm} (85)

Taking the ratio of equations 77 and 78 yields,

\[
\left(\frac{h_{2,t+1}}{h_{1,t} + n_{1,t}} \right)^{\frac{1}{\sigma_2}} \left(\frac{\beta \rho_t}{\rho_{t+1}} \theta \right) = \frac{1 + \lambda _t \left(\frac{h_{1,t}}{\sigma_2(h_{1,t} + n_{1,t})} \right)}{1 + \lambda _t \left(1 + \frac{1}{\sigma_2} \right) - \eta_t \bar{s}_1(t + 1) \left(1 + \frac{1}{\sigma_2} \right)}.
\] \hspace{1cm} (86)

Combining equations 85 and 86 generates the following expression for the ratio of the optimal labor taxes,

\[
\frac{1 - \tau_{h,2}}{1 - \tau_{h,1}} = \frac{1 + \lambda _t \left(\frac{h_{1,t}}{\sigma_2(h_{1,t} + n_{1,t})} \right)}{1 + \lambda _t \left(1 + \frac{1}{\sigma_2} \right) - \eta_t \bar{s}_1(t + 1) \left(1 + \frac{1}{\sigma_2} \right)}.
\] \hspace{1cm} (87)
B Competitive Equilibrium

For Online Publication

B.1 LBD Model

Given a social security replacement rate \(b \), a sequence of skill accumulations parameters \(\{ \Omega_j \}_{j=1}^{j_r-1} \), government expenditures \(G \), and a sequence of population shares \(\{ \mu_j \}_{j=1}^{J} \), a stationary competitive equilibrium in the LBD model is a sequence of agent allocations, \(\{ c_j, a_j+1, h_j \}_{j=1}^{J} \), a production plan for the firm \((N,K) \), a government labor tax function \(T^l : \mathbb{R}_+ \to \mathbb{R}_+ \), a government capital tax function \(T^k : \mathbb{R}_+ \to \mathbb{R}_+ \), a social security tax rate \(\tau_{ss} \), a age-specific human capital accumulation function \(S : \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+ \), a utility function \(U : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+ \), social security benefits \(SS \), prices \((w,r) \), and transfers \(Tr \) such that:

1. Given prices, policies, transfers, and benefits, the agent maximizes equation 34 subject to

 \[
 c_j + a_{j+1} = ws_j h_j - \tau_{ss} w s_j h_j, \quad (1+r)(a_j + Tr) - T^l [ws_j h_j (1 - .5 \tau_{ss})] - T^k [r(a_j + Tr)],
 \]

 \[
 s_{j+1} = S_{LBD}(\Omega_j, s_j, h_j),
 \]

 for \(j < j_r \), and

 \[
 c_j + a_{j+1} = SS + (1+r)(a_j + Tr) - T^k [r(a_j + Tr)],
 \]

 for \(j \geq j_r \).

 Additionally,

 \[
 c \geq 0, 0 \leq h \leq 1, a_j \geq 0, a_1 = 0.
 \]

2. Prices \(w \) and \(r \) satisfy

 \[
 r = \alpha \left(\frac{N}{K} \right)^{1-\alpha} - \delta \tag{92}
 \]

 \[
 w = (1-\alpha) \left(\frac{K}{N} \right)^{\alpha} \tag{93}
 \]

3. The social security policies satisfy

 \[
 SS = b \frac{wN}{\sum_{j=1}^{j_r-1} \mu_j} \tag{94}
 \]

 \[
 \tau_{ss} = \frac{ss \sum_{j=j_r}^{J} \mu_j}{w \sum_{j=1}^{j_r-1} \mu_j} \tag{95}
 \]

4. Transfers are given by

 \[
 Tr = \sum_{j=1}^{J} \mu_j (1 - \Psi_j) a_{j+1} \tag{96}
 \]

5. Government budget balance:

 \[
 G = \sum_{j=1}^{J} \mu_j T^k [r(a_j + Tr)] + \sum_{j=1}^{j_r-1} \mu_j T^l [ws_j h_j (1 - .5 \tau_{ss})] \tag{97}
 \]
6. Market clearing:

\[K = \sum_{j=1}^{J} \mu_j a_j \] (98)

\[N = \sum_{j=1}^{J} \mu_j s_j h_j \] (99)

\[\sum_{j=1}^{J} \mu_j c_j + \sum_{j=1}^{J} \mu_j a_{j+1} + G = K^\alpha N^{1-\alpha} + (1-\delta)K \] (100)

B.1.1 LOD Model

Given a social security replacement rate \(b \), a sequence of skill accumulations parameters \(\{\Omega_j\}_{j=1}^{J} \), government expenditures \(G \), and a sequence of population shares \(\{\mu_j\}_{j=1}^{J} \), a stationary competitive equilibrium in the LBD model is a sequence of agent allocations, \(\{c_j, a_{j+1}, h_j\}_{j=1}^{J} \), a production plan for the firm \((N, K)\), a government labor tax function \(T^l : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \), a government capital tax function \(T^k : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \), a social security tax rate \(\tau_{ss} \), an age-specific human capital accumulation function \(S : \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+ \), a utility function \(U : \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+ \), social security benefits \(SS \), prices \((w, r)\), and transfers \(Tr \) such that:

1. Given prices, policies, transfers, and benefits, the agent maximizes equation 34 subject to

\[c_j + a_{j+1} = ws_j h_j - \tau_{ss} ws_j h_j, +(1+r)(a_j + Tr) - T^l[ws_j h_j(1-0.5\tau_{ss})] - T^k[r(a_j + Tr)], \] (101)

\[s_{j+1} = S_{LOD}(\Omega_j, n_j, h_j), \] (102)

for \(j < j_r \), and

\[c_j + a_{j+1} = SS + (1+r)(a_j + Tr) - T^k[r(a_j + Tr)], \] (103)

for \(j \geq j_r \).

Additionally,

\[c \geq 0, 0 \leq h \leq 1, a_j \geq 0, a_1 = 0. \] (104)

2. Prices \(w \) and \(r \) satisfy

\[r = \alpha \left(\frac{N}{K} \right)^{1-\alpha} - \delta \] (105)

\[w = (1-\alpha) \left(\frac{K}{N} \right)^\alpha \] (106)

3. The social security policies satisfy

\[SS = b \frac{wN}{\sum_{j=1}^{J} \mu_j} \] (107)

\[\tau_{ss} = s/s_{j=1}^{J} \mu_j \] (108)

4. Transfers are given by

\[Tr = \sum_{j=1}^{J} \mu_j (1-\Psi_j)a_{j+1} \] (109)
5. Government budget balance:

\[G = \sum_{j=1}^{J} \mu_j T^k [r(a_j + Tr)] + \sum_{j=1}^{j-1} \mu_j T^l [ws_j h_j (1 - .5\tau_{\alpha})] \] \hspace{1cm} (110)

6. Market clearing:

\[K = \sum_{j=1}^{J} \mu_j a_j \] \hspace{1cm} (111)

\[N = \sum_{j=1}^{J} \mu_j s_j h_j \] \hspace{1cm} (112)

\[\sum_{j=1}^{J} \mu_j \epsilon_j + \sum_{j=1}^{J} \mu_j a_{j+1} + G = K^\alpha N^{1-\alpha} + (1 - \delta)K \] \hspace{1cm} (113)
Additional Effects of Sub-optimal Taxes

Not For Online Publication

Figure 10: The Effect of Suboptimal Taxes

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>LBD</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optimal Tax</td>
<td>Exogenous Optimal Tax</td>
</tr>
<tr>
<td>Y</td>
<td>0.81</td>
<td>0.82</td>
</tr>
<tr>
<td>K</td>
<td>2.17</td>
<td>2.25</td>
</tr>
<tr>
<td>N</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>Avg Hours</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>w</td>
<td>1.12</td>
<td>1.13</td>
</tr>
<tr>
<td>τ</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>tr</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>CEV</td>
<td></td>
<td>0.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tax Rate</th>
<th>LBD</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td>25.5%</td>
<td>18.1%</td>
</tr>
<tr>
<td>Labor</td>
<td>22.1%</td>
<td>23.7%</td>
</tr>
<tr>
<td>Ratio</td>
<td>1.16</td>
<td>0.77</td>
</tr>
</tbody>
</table>
References

